Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.3, 374-379, 1997
ECR플라즈마를 이용한 화학증착법에 의해 제조된 실리콘 산화막의 특성
Characteristics of Silicon Oxide Films Prepared by Chemical Vapor Deposition Using ECR Plasma Source
저온 공정이 가능한 ECR산소플라즈마를 이용하여 화학증착법으로 기판의 온도, 마이크로파 출력, 반응기내 압력, 사일렌과 산소의 희석비 등을 실험 변수로 각 실험조건에 따라 산화막을 제조하였다. 이 산화막의 물리·화학적 특성을 분석하고 표면과 Si/SiO2계면 morphology의 상관관계를 조사하고 이 산화막 표면의 조도(roughness)가 전기적 특성에 미치는 영향을 살펴보았다. 실리콘 산화막의 증착속돈는 반응기내 압력과 마이크로파 출력이 증가하고 기판의 온도가 낮을수록 증가하였다. 그러나 산소와 사일렌 가스의 비가 2:1 이상이고 반응기내 압력이 6mTorr보다 높은 실험조건에서 증착속도를 크게 증가시킬 수 있었으나 산화막의 C-V(Capacitance-Voltage) 특성은 나타나지 않았다. 산화막의 표면 조도가 작은 양질의 산화막은 증착속도가 낮은 실험조건에서 얻을 수 있었다. Si/SiO2계면에서의 조도는 산화막표면의 조도와 실험조건에 의존하였으며, Si/SiO2 계면에서 조도는 전기적 특성에 영향을 주었다.
The SiO2 films were prepared by electron cyclotron resonance plasma chemical vapor deposition(ECRPCVD) at low temperature as a function of substrate temperature, microwave power, pressure, and the ratio of SiH4/O2. We examined the physical and chemical properties of the oxide films grown at the plasma parameters and deposition conditions and compared the morphologies of the SiO2 surface and Si/SiO2 interface of the films. Also we discuss the effect of the SiO2 surface morphologies on electrical characteristics. The oxidation rate was found to increase with pressure and microwave power but decrease with substrate temperature. However, under experimental conditions with high deposition rate, such as pressure over 6 mTorr and O2/SiH4 flow rate ratio over 2:1, it is showed that the oxide films have not MOS capacitance-voltage characteristics. High quality SiO2 films with low surface roughness were obtained from growth condition with low deposition rate. Roughness of the Si/SiO2 interface depends on SiO2 film surface and growth conditions, influenced electrical properties.
[References]
  1. Pliskin WA, J. Vac. Sci. Technol., 14(5), 1064, 1977
  2. Batey J, Tierney E, J. Appl. Phys., 60(9), 3136, 1986
  3. Vinckier C, Coeckelberghs P, Stevens G, Heyns M, DeJaegre S, J. Appl. Phys., 62(4), 1450, 1987
  4. Pai CS, Chang CP, J. Appl. Phys., 68(2), 793, 1990
  5. Yasuda T, Ma Y, Habermehl S, Lucovsky G, Appl. Phys. Lett., 60(4), 434, 1992
  6. Kim US, Kook T, Jaccodine RJ, J. Electrochem. Soc., 135, 270, 1988
  7. Deal BE, Brove AS, Snow EH, Sah CT, J. Electrochem. Soc., 112, 308, 1965
  8. Murarka SP, J. Appl. Phys., 48, 5020, 1977
  9. Bassous E, Yu HN, Manisealco V, J. Electrochem. Soc., 123, 1729, 1975
  10. Kamins TJ, Mackenna EL, Metallurgical Trans., 2, 2292, 1971
  11. Salbert GT, Reinhard DK, Asmussen J, J. Vac. Sci. Technol. A, 8(3), 2919, 1990
  12. Rossnagel SM, Cuomo JJ, Westwood WD, "Handbook of Plasma Processing Technology," Noyes Publications, New Jersey, 1990
  13. Lim TH, Huh YJ, Park TJ, HWAHAK KONGHAK, 32(3), 332, 1994
  14. Knox RD, Dalal V, Moradi B, Chumanov G, J. Vac. Sci. Technol. A, 11(4), 1896, 1993
  15. Kao SC, Doremus RH, J. Electrochem. Soc., 141(7), 1832, 1994
  16. Mishima Y, Yagishita T, J. Appl. Phys., 64(8), 3972, 1988