Issue
Korean Journal of Chemical Engineering,
Vol.29, No.7, 969-973, 2012
Atomic layer deposition of TiO2 from tetrakis-dimethylamido-titanium and ozone
Ozone (O3) was employed as an oxygen source for the atomic layer deposition (ALD) of titanium dioxide (TiO2) based on tetrakis-dimethyl-amido titanium (TDMAT). The effects of deposition temperature and O3 feeding time on the film growth kinetics and physical/chemical properties of the TiO2 films were investigated. Film growth was possible at as low as 75 ℃, and the growth rate (thickness/cycles) of TiO2 was minimally affected by varying the temperatures at 150-225 ℃. Moreover, saturated growth behavior on the O3 feeding time was observed at longer than 0.5 s. Higher temperatures tend to provide films with lower levels of carbon impurities. The film thickness increased linearly as the number of cycles increased. With thicker films and at higher deposition temperatures, surface roughening tended to increase. The as-deposited films were amorphous regardless of the substrate temperatures and there was no change of crystal phase even after annealing at temperatures of 400-600 ℃. The films deposited in 0.5 mm holes with an aspect ratio of 3 : 1 showed an excellent conformality.
[References]
  1. Durand HA, Brimaud JH, Hellman O, Shibata H, Sakuragi S, Makita Y, Gesbert D, Meyrueis P, Appl. Surf. Sci., 86, 122, 1995
  2. Jung JA, Kwak DH, Oh DW, Park DM, Yang OB, Korean Chem. Eng. Res., 50(1), 11, 2012
  3. Keshmiri M, Troczynski T, J. Non-Crystal. Solids., 324, 289, 2003
  4. Choi MG, Kang KY, Lee YG, Kim KM, Korean Chem. Eng. Res., 50(1), 25, 2012
  5. Kim H, Kushto GP, Arnold CB, Kafafi ZH, Pique A, Appl. Phys. Lett., 85, 64, 2004
  6. Yu JG, Zhao XJ, Zhao QN, Thin Solid Films, 379(1-2), 7, 2000
  7. Abou-Helal MO, Seeber WT, Appl. Surf. Sci., 195(1-4), 53, 2002
  8. Keshmiri M, Mohseni M, Troczynski T, Appl. Catal., B53, 209, 2004
  9. Tada H, Tanaka M, Langmuir, 13(2), 360, 1997
  10. Suda Y, Kawasaki H, Ueda T, Ohshima T, Thin Solid Films, 453-54, 162, 2004
  11. Shin HJ, Jeong DK, Lee JG, Sung MM, Kim JY, Adv. Mater., 16(14), 1197, 2004
  12. Lim JW, Yun SJ, Lee JH, Electrochem. Solid State Lett., 7(11), F73, 2004
  13. Dendooven J, Sree SP, Keyser KD, Deduytsche D, Martens JA, Ludwig KF, Detavernier C, J. Phys. Chem. C., 115, 6605, 2011
  14. Kim SK, Hoffmann-Eifert S, Reiners M, Waser R, J. Electrochem. Soc., 158(1), D6, 2011
  15. Xie Q, Musschoot J, Deduytsche D, Van Meirhaeghe RL, Detavernier C, Van den Berghe S, Jiang YL, Ru GP, Li BZ, Qu XP, J. Electrochem. Soc., 155(9), H688, 2008
  16. Rai VR, Agarwal S, J. Phys. Chem. C., 112, 9552, 2008
  17. Kim SK, Lee SY, Seo M, Choi GJ, Hwang CS, J. Appl.Phys., 102, 024109, 2007
  18. Pheamhom R, Sunwoo C, Kim DH, J. Vac. Sci. Technol. A, 24(4), 1535, 2006
  19. Lim GT, Kim DH, Thin Solid Films, 498(1-2), 254, 2006
  20. Rose M, Niinisto J, Michalowski P, Gerlich L, Wilde L, Endler I, Bartha JW, J. Phys. Chem. C., 113, 21825, 2009
  21. Liu XY, Ramanathan S, Longdergan A, Srivastava A, Lee E, Seidel TE, Barton JT, Pang D, Gordon RG, J. Electrochem. Soc., 152(3), G213, 2005
  22. Puurunen RL, J. Appl. Phys., 97, 121301, 2005
  23. Potts SE, Keuning W, Langereis E, Dingemans G, van de Sanden MCM, Kessels WMM, J. Electrochem. Sco., 157, 66, 2010
  24. Wang Y, Dai M, Ho MT, Wielunski LS, Chabal YJ, Appl.Phys. Lett., 90, 22906, 2007
  25. Torres GR, Lindgren T, Lu J, Granqvist CG, Lindquist SE, J. Phys. Chem. B, 108(19), 5995, 2004