Issue
Korean Journal of Chemical Engineering,
Vol.27, No.2, 645-650, 2010
Sintering characteristics of TiO2 nanoparticles by microwave processing
In many applications, sintering of particles is required to improve device efficiency. In particular, sintering of TiO2 nanoparticles attracts great attention because of growing of solar cell applications, and conventional sintering using an electrical furnace has been widely used for sintering of nanoparticles. In this study, conventional and microwave sintering processes were investigated to examine the possibility of application of microwave sintering method to TiO2 nanoparticles. Microwave sintering of TiO2 nanoparticles showed promising results compared with the conventional heat treatments in terms of surface area, crystalline phase, optical property and morphology. Considering the short sintering time, the microwave method could be more advantageous than the conventional sintering method in some application areas.
[References]
  1. Glowczyk-Zubek J, J. Appl. Cosmetol., 22, 143, 2004
  2. Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64, 2008
  3. Kim HR, Choi KY, Shul YG, Korean J. Chem. Eng., 24(4), 596, 2007
  4. Nam WS, Han GY, Korean J. Chem. Eng., 20(1), 180, 2003
  5. Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633, 2000
  6. Kuwabata S, Yamauchi H, Yoneyama H, Langmuir, 14(7), 1899, 1998
  7. Ferry JL, Glaze WH, Langmuir, 14(13), 3551, 1998
  8. Crittenden JC, Liu J, Hand DW, Perram DL, Water Res., 31, 429, 1997
  9. O’Regan B, Gratzel M, Nature, 353, 737, 1991
  10. Lee JW, Hwang KJ, Shim WG, Park KH, Gu HB, Kwun KH, Korean J. Chem. Eng., 24(5), 847, 2007
  11. Ngamsinlapasathian S, Sreethawong T, Suzuki Y, Yoshikawa S, Sol. Energ. Mat. Sol. C., 86, 269, 2005
  12. Kang MG, Park NG, Chang SH, Sol. Energy Mater. Sol. C., 75, 475, 2003
  13. Park NG, van de Lagemaat J, Frank AJ, J. Phys. Chem. B, 104(38), 8989, 2000
  14. Gratzel M, Prog. Photovolt: Res. Appl., 8, 171, 2000
  15. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, J. Am. Ceram. Soc., 80, 3157, 1997
  16. Sutton WH, Am. Ceram. Soc. Bull., 68, 376, 1989
  17. Upadhyaya DD, Ghosh A, Dey GK, Prasad R, Suri AK, J. Mater. Sci., 36(19), 4707, 2001
  18. Borkar SA, Dharwadkar SR, Ceram. Int., 30, 509, 2004
  19. Brosnan KH, Messing GL, Agrawal DK, J. Am. Ceram. Soc., 86(8), 1307, 2003
  20. Park JH, Ahn ZS, J. Mater. Sci., 30(13), 3339, 1995
  21. Spurr RA, Myers H, Anal. Chem., 29, 760, 1957
  22. Cullity BD, Stock SR, Elements of X-ray diffraction, Prentice Hall, London, 2001
  23. Kubelka P, J. Opt. Am., 38, 448, 1948
  24. Kubelka P, Munk F, Z. Tech. Phys., 12, 593, 1938
  25. http://rsbweb.nih.gov/ij/index.html