Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3179-3189, 2022
Objectives, challenges, and prospects of batch processes: Arising from injection molding applications
Injection molding, a polymer processing technique that converts thermoplastics into a variety of plastic products, is a complicated nonlinear dynamic process that interacts with a different group of variables, including the machine, the mold, the material, and the process parameters. As injection molding process operates sequentially in phases, we treat it as a batch process. The review paper discusses the batch nature of injection molding and identifies the three main objectives for future development of injection molding: higher efficiency, greater profitability, and longer sustainability. From the perspective of system engineering, our discussion centers on the primary challenges for the batch operation of injection molding systems: 1) Model development in face of product changes, 2) Control strategies in face of dynamic changes, 3) Data analysis and process monitoring, and 4) Safety assurance and quality improvement, and the current progress that has been made in addressing these challenges. In light of the advancement of new information technologies, this paper provides several opportunities and encourages further research that may break existing capability limits and develop the next generation of automation solutions to bring about a revolution in this area.
[References]
  1. Chen Z, Turng LS, Adv. Polym. Technol., 24, 165, 2005
  2. Brydson JA, Plastics materials, Elsevier, Netherlands (1999).
  3. Betsche M, US Patent, 8,229,591 (2012).
  4. Yang Y, Yao K, Gao F, Adv. Polym. Technol., 27, 217, 2008
  5. Moayyedian M, Intelligent optimization of mold design and process parameters in injection molding, Springer, New York (2018).
  6. Yang Y, Chen X, Lu N, Gao F, Injection molding process control, monitoring, and optimization, Hanser Publications, Cincinnati, Ohio, USA (2016).
  7. Gao F, Yang Y, Shao C, Chem. Eng. Sci., 56, 7025, 2001
  8. Yoo H, Byun HE, Han D, Lee JH, Annu. Rev. Control, 52, 108, 2021
  9. Jiang Q, Yan S, Yan X, Yi H, Gao F, IEEE Trans. Ind. Inform., 16, 2839, 2019
  10. Lou Z, Wang Y, Si Y, Lu S, Automatica, 138, 110148, 2022
  11. Zhou Y, Gao K, Li D, Xu Z, Gao F, Ind. Eng. Chem. Res., 60, 15658, 2021
  12. Bonvin D, Srinivasan B, Hunkeler D, IEEE Control Syst. Mag., 26, 34, 2006
  13. Lu J, Cao Z, Gao F, Acta Autom. Sin., 43, 933, 2017
  14. Havlicsek H, Alleyne A, IEEE-ASME T. Mech., 4, 312, 1999
  15. Wang Y, Zhou D, Gao F, J. Process Control, 18, 543, 2008
  16. Zhou Y, Gao K, Tang X, Hu H, Li D, Gao F, IEEE Trans. Cybern., 1, 2022
  17. Liu J, Xu Z, Zhao J, Shao Z, Chem. Eng. Res. Des., 181, 278, 2022
  18. Zhou H, Computer modeling for injection molding: Simulation, optimization, and control, John Wiley & Sons (2012).
  19. Chen B, Wan J, Shu L, Li P, Mukherjee M, Yin B, IEEE Access, 6, 6505, 2017
  20. Zhu J, Ge Z, Song Z, Gao F, Annu. Rev. Control, 46, 107, 2018
  21. Zhou Y, Gao F, IFAC-PapersOnLine, 55, 774, 2022
  22. Liu T, Gao F, Industrial process identification and control Design: Step-test and relay-experiment-based methods, Springer Science & Business Media (2011).
  23. Tangirala AK, Principles of system identification: Theory and practice, CRC Press (2018).
  24. Chen J, Huang B, Ding F, Gu Y, Automatica, 94, 194, 2018
  25. Shi J, Gao F, Wu TJ, AIChE J., 52, 2171, 2006
  26. Lu J, Yao Y, Gao F, Ind. Eng. Chem. Res., 48, 9603, 2009
  27. Lu J, Gao F, Ind. Eng. Chem. Res., 47, 9508, 2008
  28. Lu J, Yao K, Gao F, AIChE J., 55, 2318, 2009
  29. Yan W, Hu S, Yang Y, Gao F, Chen T, Chem. Eng. J., 166, 1095, 2011
  30. Luo L, Yao Y, Gao F, Ind. Eng. Chem. Res., 54, 5736, 2015
  31. Seborg DE, Edgar TF, Mellichamp DA, Doyle III FJ, Process dynamics and control, John Wiley & Sons, Hoboken, NJ (2016).
  32. Kim B, Huusom JK, Lee JH, Ind. Eng. Chem. Res., 58, 664, 2019
  33. Wang Y, Gao F, Doyle III FJ, J. Process Control, 19, 1589, 2009
  34. Shi J, Gao F, Wu TJ, J. Process Control, 15, 907, 2005
  35. Wang Y, Zhang H, Wei S, Zhou D, Huang B, IEEE Trans. Syst. Man Cybern.-Syst., 48, 1493, 2017
  36. Jeong DH, Lee JM, Comput. Chem. Eng., 139, 106875, 2020
  37. Bristow DA, Tharayil M, Alleyne AG, IEEE Control Syst. Mag., 26, 96, 2006
  38. Lee JH, Lee KS, Control Eng. Practice, 15, 1306, 2007
  39. Ahn HS, Moore KL, Chen Y, Iterative learning control: robustness and monotonic convergence for interval systems, Springer Science & Business Media, Berlin, Germany (2007).
  40. Son TD, Ahn HS, Moore KL, Automatica, 49, 1465, 2013
  41. Shi J, Gao F, Wu TJ, Ind. Eng. Chem. Res., 44, 8095, 2005
  42. Shi J, Gao F, Wu TJ, J. Process Control, 17, 715, 2007
  43. Zhou Y, Li D, Gao F, IEEE Trans. Ind. Inform., 18, 3095, 2022
  44. Oh SK, Lee JM, J. Process Control, 36, 64, 2015
  45. Lu J, Cao Z, Zhao C, Gao F, Ind. Eng. Chem. Res., 58, 17164, 2019
  46. Wang L, Yu J, Zhang R, Li P, Gao F, IEEE Trans. Syst. Man Cybern.-Syst., 51, 2536, 2019
  47. Zhou Y, Li D, Lu J, Xi Y, Cen L, IET Contr. Theory Appl., 12, 504, 2018
  48. Zhou Y, Li D, Xi Y, Gan Z, Int. J. Robust Nonlinear Control, 29, 43, 2019
  49. Xu JX, Jin X, IEEE Trans. Autom. Control, 58, 1322, 2012
  50. Mishra S, Topcu U, Tomizuka M, IEEE Trans. Control Syst. Technol., 19, 1613, 2010
  51. Chi R, Liu X, Zhang R, Hou Z, Huang B, J. Process Control, 55, 10, 2017
  52. Qin SJ, Badgwell TA, Control Eng. Practice, 11, 733, 2003
  53. Zhou Y, Li D, Xi Y, Gan Z, Sci. China Inform. Sci., 63, 1, 2020
  54. Oh SK, Lee JM, Comput. Chem. Eng., 93, 284, 2016
  55. Zhang R, Wu S, Tao J, IEEE Trans. Ind. Inform., 15, 2905, 2018
  56. Smith CL, Control of batch processes, John Wiley & Sons (2014).
  57. Lee KS, Lee JH, IEEE Trans. Autom. Control, 45, 1928, 2000
  58. Owens DH, Hatonen J, Annu. Rev. Control, 29, 57, 2005
  59. Wang L, Mo S, Zhou D, Gao F, Chen X, J. Process Control, 23, 715, 2013
  60. Amann N, Owens DH, Rogers E, Int. J. Control, 69, 203, 1998
  61. Shi J, Gao F, Wu TJ, Ind. Eng. Chem. Res., 45, 4603, 2006
  62. Shi J, Gao F, Wu TJ, Ind. Eng. Chem. Res., 45, 4617, 2006
  63. Chin I, Qin SJ, Lee KS, Cho M, Automatica, 40, 1913, 2004
  64. Wu S, Zhang R, J. Process Control, 81, 172, 2019
  65. Shi J, Gao F, IFAC Proceedings Volumes, 40, 243, 2007
  66. He S, Chen W, Li D, Xi Y, Xu Y, Zheng P, IEEE Trans. Cybern., 52, 7492, 2022
  67. Lu J, Cao Z, Gao F, IEEE Trans. Ind. Electron., 66, 6230, 2018
  68. Lee JM, Lee JH, Automatica, 41, 1281, 2005
  69. Chi R, Hou Z, Jin S, Huang B, IEEE Trans. Neural Networks, 29, 5971, 2018
  70. Chi R, Hou Z, Jin S, Wang D, Chien CJ, IEEE Trans. Neural Networks, 26, 2939, 2015
  71. Janssens P, Pipeleers G, Swevers J, IEEE Trans. Control Syst. Technol., 21, 546, 2012
  72. Rădac MB, Precup RE, Petriu EM, Preitl S, Dragoş CA, IEEE Trans. Ind. Inform., 9, 2327, 2012
  73. Lee JH, Natarajan S, Lee KS, J. Process Control, 11, 195, 2001
  74. Lee KS, Lee JH, J. Process Control, 13, 607, 2003
  75. Lee KS, Chin IS, Lee HJ, Lee JH, AIChE J., 45, 2175, 1999
  76. Lee JH, Lee KS, Kim WC, Automatica, 36, 641, 2000
  77. Li D, He S, Xi Y, Liu T, Gao F, Wang Y, Lu J, IEEE Trans. Ind. Electron., 67, 3116, 2019
  78. Li D, Xi Y, Lu J, Gao F, Ind. Eng. Chem. Res., 55, 13074, 2016
  79. Zhang Q, Yu J, Wang L, IEEE Access, 7, 126842, 2019
  80. Cinar A, Parulekar SJ, Undey C, Birol G, Batch fermentation: Modeling, monitoring, and control, NY: CRC press, New York (2003).
  81. Mhaskar P, Garg A, Corbett B, Modeling and control of batch processes, Springer, London, UK (2015).
  82. Wang L, Zhang R, Gao F, Iterative learning stabilization and fault-tolerant control for batch processes, Springer, Singapore (2020).
  83. Qin SJ, Annu. Rev. Control, 36, 220, 2012
  84. Ge Z, Song Z, Gao F, Ind. Eng. Chem. Res., 52, 3543, 2013
  85. Ding SX, Zhang P, Naik A, Ding EL, Huang B, J. Process Control, 19, 1496, 2009
  86. Wang XZ, Data mining and knowledge discovery for process monitoring and control, Springer Science & Business Media (2012).
  87. Weese M, Martinez W, Megahed FM, Jones-Farmer LA, J. Qual. Technol., 48, 4, 2016
  88. Zhou Y, Vamvoudakis KG, Haddad WM, Jiang ZP, IEEE Trans. Cybern., 51, 4648, 2020
  89. Jordan MI, Mitchell TM, Science, 349, 255, 2015
  90. Yu J, J. Process Control, 45, 84, 2016
  91. Tong C, Yan X, Chemometrics Intell. Lab. Syst., 130, 20, 2014
  92. Chen S, Yu J, Wang S, J. Process Control, 87, 54, 2020
  93. Aldrich C, Auret L, Unsupervised process monitoring and fault diagnosis with machine learning methods, Springer (2013).
  94. Yin S, Ding SX, Xie X, Luo H, IEEE Trans. Ind. Electron., 61, 6418, 2014
  95. Jiang Q, Yan X, Huang B, Ind. Eng. Chem. Res., 58, 12899, 2019
  96. Severson K, Chaiwatanodom P, Braatz RD, Annu. Rev. Control, 42, 190, 2016
  97. Gao Z, Cecati C, Ding SX, IEEE Trans. Ind. Electron., 62, 3757, 2015
  98. Chiang LH, Russell EL, Braatz RD, Fault detection and diagnosis in industrial systems, Springer Science & Business Media (2000).
  99. Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K, Comput. Chem. Eng., 27, 327, 2003
  100. Heo S, Lee JH, IFAC-PapersOnLine, 51, 470, 2018
  101. Zhao C, Wang F, Lu N, Jia M, J. Process Control, 17, 728, 2007
  102. Zhao C, Gao F, Chemometrics Intell. Lab. Syst., 133, 1, 2014
  103. Yao Y, Gao F, Annu. Rev. Control, 33, 172, 2009
  104. Lu N, Gao F, Ind. Eng. Chem. Res., 44, 3547, 2005
  105. Camacho J, Picó J, Ferrer A, J. Chemometr., 22, 632, 2008
  106. Liu J, Wong DSH, J. Chemometr., 22, 385, 2008
  107. Doan XT, Srinivasan R, Comput. Chem. Eng., 32, 230, 2008
  108. Zhao C, Wang F, Mao Z, Lu N, Jia M, Ind. Eng. Chem. Res., 47, 3104, 2008
  109. Smilde AK, Westerhuis JA, De Jong S, J. Chemometr., 17, 323, 2003
  110. Undey C, Cinar A, IEEE Control Syst. Mag., 22, 40, 2002
  111. Qin SJ, Valle S, Piovoso MJ, J. Chemometr., 15, 715, 2001
  112. Choi SW, Lee IB, J. Process Control, 15, 295, 2005
  113. Lu N, Gao F, Wang F, AIChE J., 50, 255, 2004
  114. Pariyani A, Seider WD, Oktem UG, Soroush M, AIChE J., 58, 812, 2012
  115. Pariyani A, Seider WD, Oktem UG, Soroush M, AIChE J., 58, 826, 2011
  116. Wu Z, Christofides PD, Process operational safety and cybersecurity, Springer (2021).
  117. Gao F, Zhao C, US Patent, 6,309,571 (2001).
  118. Lee JH, Int. J. Control Autom., 9, 415, 2011
  119. Mayne DQ, Automatica, 50, 2967, 2014
  120. Corbett B, Mhaskar P, AIChE J., 62, 1581, 2016
  121. Chin IS, Lee KS, Lee JH, Ind. Eng. Chem. Res., 39, 693, 2000
  122. Duchesne C, MacGregor JF, Chemometrics Intell. Lab. Syst., 51, 125, 2000
  123. Chu YH, Lee YH, Han C, Ind. Eng. Chem. Res., 43, 2680, 2004
  124. Zhao C, Wang F, Mao Z, Lu N, Jia M, Ind. Eng. Chem. Res., 47, 825, 2008
  125. Zhang J, Martin E, Morris A, Kiparissides C, Comput. Chem. Eng., 21, S1025, 1997
  126. Kusiak A, Nature, 544, 23, 2017
  127. Aumi S, Mhaskar P, AIChE J., 58, 2105, 2012
  128. Khayyam H, Jamali A, Bab-Hadiashar A, Esch T, Ramakrishna S, Jalili M, Naebe M, IEEE Access, 8, 111381, 2020
  129. Lee JH, Shin J, Realff MJ, Comput. Chem. Eng., 114, 111, 2018
  130. Shin J, Badgwell TA, Liu KH, Lee JH, Comput. Chem. Eng., 127, 282, 2019
  131. Kim JW, Park BJ, Yoo H, Oh TH, Lee JH, Lee JM, J. Process Control, 87, 166, 2020
  132. Yoo H, Kim B, Kim JW, Lee JH, Comput. Chem. Eng., 144, 107133, 2021
  133. Yin S, Kaynak O, Proc. IEEE, 103, 143, 2015
  134. Shin J, Lee JH, Comput. Chem. Eng., 91, 114, 2016
  135. Kanagachidambaresan G, Anand R, Balasubramanian E, Mahima V, Internet of things for industry 4.0: Design, challenges and solutions, Springer (2020).
  136. Qu H, Li D, Zhang R, Gao F, Neurocomputing, 315, 322, 2018
  137. Qu H, Li D, Zhang R, Yang SH, Gao F, Neurocomputing, 397, 70, 2020
  138. Zhou Y, Li D, Gao F, Asian J. Control, 24, 2352, 2022
  139. Zhou Y, Li D, Gao F, IEEE Trans. Syst. Man Cybern.-Syst., 2022
  140. Zhou Y, Li D, Xi Y, Gao F, Automatica, 136, 110039, 2022
  141. Fuller A, Fan Z, Day C, Barlow C, IEEE Access, 8, 108, 2020
  142. He B, Bai KJ, Adv. Manuf., 9, 1, 2021