Issue
Korean Journal of Chemical Engineering,
Vol.39, No.4, 997-1003, 2022
Enhanced production of biosurfactants through genetic engineering of Pseudozyma sp. SY16
Mannosylerythritol lipids (MELs) are natural glycolipids that possess biosurfactant properties and are abundantly produced by Pseudozyma sp. Due to their specific characteristics, such as biodegradability and low toxicity, MELs have attracted significant interest as an alternative to petroleum-based surfactants in medical and cosmetic fields. The present study describes a novel expression system and optimal transformation conditions of Pseudozyma sp. SY16 for producing MELs. The hygromycin resistance gene under the control of Deinococcus radiodurans-derived Kat1 promoter was used as selection marker and the superfolder green fluorescent protein under the control of the yeast glyceraldehyde- 3-phosphate dehydrogenase promoter was used for confirming successful expression. Using this expression system, several transformants overexpressing genes related to MEL production, including emt1, mmf1, and mat1, were generated. Among them, MMF1-2 strain exhibited an MEL yield of 27.9 g/L, which was 31.6% higher than that of the wild-type strain. Altogether, this study demonstrates that engineered yeast strains hold potential for large-scale production of MELs.
[References]
  1. Sar P, Ghosh A, Scarso A, Saha B, Res. Chem. Intermediat., 45, 6021, 2019
  2. Jardak K, Drogui P, Daghrir R, Environ. Sci. Pollut. Res., 23, 3195, 2016
  3. Singh P, Patil Y, Rale V, J. Appl. Microbiol., 126, 2, 2019
  4. Kitamoto D, Isoda H, Nakahara T, J. Biosci. Bioeng., 94, 187, 2002
  5. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS, Int. J. Mol. Sci., 12, 633, 2011
  6. Salam JA, Das N, J. Microbiol. Biotechnol., 23, 1598, 2013
  7. Singh P, Cameotra SS, Trends Biotechnol., 22, 142, 2004
  8. Arutchelvi JI, Bhaduri S, Uppara PV, Doble M, J. Ind. Microbiol. Biotechnol., 35, 1559, 2008
  9. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P, Curr. Sci., 94, 736, 2008
  10. Bae IH, Lee SH, Oh S, Choi H, Marinho PA, Yoo JW, Ko JY, Lee ES, Lee TR, Lee CS, Kim DY, Korean J. Physiol. Pharmacol., 23, 113, 2019
  11. Prelich G, Genetics, 190, 841, 2012
  12. Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M, Appl. Environ. Microbiol., 72, 5469, 2006
  13. Wada K, Koike H, Fujii T, Morita T, PLoS One, 12, e0227295, 2020
  14. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F, Anal. Chem., 28, 350, 1956
  15. Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS, Nat. Biotechnol., 24, 79, 2006
  16. Bitter GA, Egan KM, Gene, 32, 263, 1984
  17. Avis TJ, Anguenot R, Neveu B, Bolduc S, Zhao Y, Cheng Y, Labbé C, Belzile F, Bélanger RR, Biosci. Biotechnol. Biochem., 72, 456, 2008
  18. Li A, Liu Z, Li Q, Yu L, Wang D, Deng X, FEMS Yeast Res., 8, 6, 2008
  19. Hopple JS, Vilgalys R, Mol. Phylogenet. Evol., 13, 1, 1999
  20. Warner JR, Trends Biochem. Sci., 24, 437, 1999
  21. Maier T, Güell M, Serrano L, Febs Lett., 583, 3966, 2009
  22. Rosano GL, Ceccarelli EA, Front. Microbiol., 5, 172, 2014