Issue
Korean Journal of Chemical Engineering,
Vol.33, No.9, 2711-2715, 2016
Effect of oxygen flow rate on the electrical and optical characteristics of dopantless tin oxide films fabricated by low pressure chemical vapor deposition
The effect of oxygen flow rate on the electrical and optical characteristics of dopantless tin oxide films prepared by low pressure chemical vapor deposition (LPCVD) was investigated. A decrease in the sheet resistance of the film with increasing oxygen flow rate in the range of 200-300 sccm was attributed to an increase in the film thickness (and correspondingly, in the grain size); while at oxygen flow rates higher than 300 sccm, the increase in the sheet resistance of the film resulted from an increase in the X-ray diffraction peak intensities of the (110), (101), and (201) planes. The optical bandgap of the film decreased when the oxygen flow rate was increased from 200 to 300 sccm, but it remained nearly constant for oxygen flow rates higher than 300 sccm. A maximum figure-of-merit was achieved for films prepared with an oxygen flow rate of 300 sccm.
[References]
  1. Yusta FJ, Hitchman ML, Shamlian SH, J. Mater. Chem., 7, 1421, 1997
  2. Korotkov RY, Ricou P, Farran AJE, Thin Solid Films, 502(1-2), 79, 2006
  3. Maleki M, Rozati SM, Phys. Scr., 86, 015801, 2012
  4. Bansal S, Pandya DK, Kashyap SC, Haranath D, J. Alloy. Compd., 583, 186, 2014
  5. Wang Y, Ramos I, Santiago-Aviles JJ, J. Appl. Phys., 102, 093517, 2007
  6. Kim JY, Kim ER, Han YK, Nam KH, Ihm DW, Jpn. J. Appl. Phys., 41, 237, 2001
  7. Sheel DW, Yates HM, Evans P, Dagkaldiran U, Gordijn A, Finger F, Remes Z, Vanecek M, Thin Solid Films, 517(10), 3061, 2009
  8. Klein A, Korber C, Wachau A, Sauberlich F, Gassenbauer Y, Harvey SP, Proffit DE, Mason TO, Materials, 3, 4892, 2010
  9. Kang YG, Kim HJ, Park HG, Kim BY, Seo DS, J. Mater. Chem., 22, 15969, 2012
  10. Fine GF, Cavanagh LM, Afonja A, Binions R, Sensors, 10, 5469, 2010
  11. Korotcenkov G, Brinzari V, Schwank J, DiBattista M, Vasiliev A, Sens. Actuators B-Chem., 77, 244, 2001
  12. Yadav AA, Masumdar EU, Moholkar AV, Neumann-Spallart M, Rajpure KY, Bhosale CH, J. Alloy. Compd., 488, 350, 2009
  13. Cho YS, Moon JW, Lim DC, Kim YD, Korean J. Chem. Eng., 30(5), 1142, 2013
  14. Kim IH, Ko JH, Kim D, Lee KS, Lee TS, Jeong JH, Cheong B, Baik YJ, Kim WM, Thin Solid Films, 515(4), 2475, 2006
  15. Senthilkumar V, Vickraman P, P. J. Mater. Sci.-Mater. Electron., 21, 578, 2010
  16. Pan XQ, Fu L, Dominguez JE, J. Appl. Phys., 89, 6056, 2001
  17. Nath RK, Nath SS, Sensor Mater., 21, 95, 2009
  18. Bagheri-Mohagheghi MM, Shokooh-Saremi M, Semicond. Sci. Technol., 19, 764, 2004
  19. Kim JH, Cho SW, Kang DK, Lee KM, Baek CY, Lee HM, Kim CK, Sci. Adv. Mater., 8, 117, 2016
  20. Wan CF, McGrath RD, Keenan WF, Frank SN, J. Electrochem. Soc., 136, 1459, 1989
  21. Belanger D, Dodelet JP, Lombos BA, Dickson JI, J. Electrochem. Soc., 132, 1398, 1985
  22. Chopra KL, Major S, Pandya DK, Thin Solid Films, 102, 1, 1985
  23. Haacke G, J. Appl. Phys., 47, 4086, 1976