Issue
Korean Journal of Chemical Engineering,
Vol.31, No.2, 350-363, 2014
Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics
The hydrodynamics inside a high solid particle concentration circulating fluidized bed reactor was investigated using computational fluid dynamics simulation. Compared to a low solid particle reactor, all the conventional fluidization regimes were observed. In addition, two unconventional fluidization regimes, circulating-turbulent and dense suspension bypassing regimes, were found with only primary gas injection. The circulating-turbulent fluidization regime showed uniformly dense solid particle distribution in all the system directions, while the dense suspension bypassing fluidization regime exhibited the flow of solid particles at only one side system wall. Then, comprehensive fluidization regime clarification and mapping were evaluated using in-depth system parameters. In the circulatingturbulent fluidization regime, the total granular temperature was low compared to the adjacent fluidization regimes. In the dense suspension bypassing fluidization regime, the highest total granular temperature was obtained. The circulating-turbulent and dense suspension bypassing fluidization regimes are suitable for sorption and transportation applications, respectively.
[References]
  1. Grace JR, Avidan AA, Knowlton TM, Circulating fluidized beds, Blackie Academic and Professional, London, 1997
  2. Basu P, Combustion and gasification in fluidized beds, CRC Press, New York, 2006
  3. Kunii D, Levenspiel O, Fluidization engineering, Butterworth-Heinemann, Boston, 1991
  4. Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory description, Academic Press, Boston, 1994
  5. Rhodes M, Introduction to particle technology, Wiley, West Sussex, UK, 2008
  6. Yang WC, Handbook of fluidization and fluid-particle systems, Marcel Dekker, Inc., New York, 2003
  7. Masuda H, Higashitani K, Yoshida H, Powder technology: Handling and operations, process instrumentation, and working hazards, CRC Press, Boca Raton, FL, 2006
  8. Chalermsinsuwan B, Kuchonthara P, Piumsomboon P, Chem. Eng. Process., 49(11), 1144, 2010
  9. Gidaspow D, Jiradilok V, Computational techniques: The multiphase CFD approach to fluidization and green energy technologies, Nova Science Publishers, Inc., New York, 2010
  10. Bi HT, Grace JR, Int. J. Multiph. Flow, 21(6), 1229, 1995
  11. Chalermsinsuwan B, Piumsomboon P, Chem. Eng. Sci., 66(22), 5602, 2011
  12. Rabinovich E, Kalman H, Powder Technol., 207(1-3), 119, 2011
  13. Gao X, Wu C, Cheng YW, Wang LJ, Li X, Powder Technol., 228, 1, 2012
  14. Makkawi YT, Wright PC, Chem. Eng. Sci., 57(13), 2411, 2002
  15. Hou QF, Zhou ZY, Yu AB, Chem. Eng. Sci., 84, 449, 2012
  16. Jaiboon O, Chalermsinsuwan B, Mekasut L, Piumsomboon P, Powder Technol., 233, 215, 2013
  17. Almuttahar A, Taghipour F, Powder Technol., 185(1), 11, 2008
  18. Chalermsinsuwan B, Piumsomboon P, Gidaspow D, Chem. Eng. Sci., 64(6), 1195, 2009
  19. Guan G, Fushimi C, Tsutsumi A, Ishizuka M, Matsuda S, Hatano H, Suzuki Y, Particuology, 8(6), 602, 2010
  20. Qi M, Barghi S, Zhu J, Chem. Eng. J., 209, 633, 2012
  21. Chalermsinsuwan B, Piumsomboon P, Gidaspow D, AIChE J., 56(11), 2805, 2010
  22. Tatemoto Y, Yano S, Mawatari Y, Noda K, Komatsu N, Chem. Eng. Sci., 62(1-2), 471, 2007
  23. da Silva FRGB, de Souza M, de Souza da Costa AM, de Matos Jorge LM, Paraiso PR, Powder Technol., 229, 61, 2012
  24. Grace JR, Powder Technol., 113(3), 242, 2000
  25. Kim SW, Kirbas G, Bi H, Lim CJ, Grace JR, Chem. Eng. Sci., 59(18), 3955, 2004
  26. Li ZQ, Wu CN, Wei F, Jin Y, Powder Technol., 139(3), 214, 2004
  27. Bastos JCSC, Rosa LM, Mori M, Marini F, Maitignoni WP, Catal. Today, 130(2-4), 462, 2008
  28. Zhu J, Particuology, 8, 640, 2010
  29. Versteeg HK, Malalasekera W, An introduction to computational fluid dynamics: The finite volume method, Prentice Hall, New Jersey, 2007
  30. Fluent, Inc., Fluent 6.3 User’s Guide, Fluent, Inc., Lebanon, 2006
  31. Chapman S, Cowling TG, The mathematical theory of nonuniform gases, Cambridge University Press, New York, 1970
  32. Zhang N, Lu BN, Wang W, Li JH, Chem. Eng. J., 162(2), 821, 2010
  33. Bi H, Zhu J, AIChE J., 39(8), 1272, 1993
  34. Issangya AS, Bai D, Bi HT, Lim KS, Zhu J, Grace JR, Chem. Eng. Sci., 54(22), 5451, 1999
  35. Cruz E, Steward FR, Pugsley T, Powder Technol., 169(3), 115, 2006
  36. Almuttahar A, Taghipour F, Chem. Eng. Sci., 63(6), 1696, 2008
  37. Wang X, Jiang F, Lei J, Wang J, Wang S, Xu X, Xiao Y, Appl. Therm. Eng., 31(14-15), 2254, 2011
  38. Zhu HY, Zhu J, Chem. Eng. Sci., 63(11), 2920, 2008
  39. Qi M, Zhu J, Barghi S, Chem. Eng. Sci., 84, 437, 2012
  40. Zhu X, Yang C, Li C, Liu Y, Wang L, Li T, Geng Q, Chem. Eng. J., 215-216, 188, 2013
  41. Thummakul T, Piumsomboon P, Chalermsinsuwan B, CFD simulation of carbon dioxide reduction from flue gas using solid sorbent in circulating fluidized bed reactor, Master’s Degree Thesis, Chulalongkorn University, Bangkok, 2013
  42. Chalermsinsuwan B, Gidaspow D, Piumsomboon P, Chem. Eng. J., 171(1), 301, 2011
  43. Chalermsinsuwan B, Chanchuey T, Buakhao W, Gidaspow D, Piumsomboon P, Chem. Eng. J., 189-190, 313, 2012
  44. Nikolopoulos A, Nikolopoulos N, Charitos A, Grammelis P, Kakaras E, Bidwe AR, Varela G, Chem. Eng. Sci., 90, 137, 2013
  45. Johnson PC, Jackson R, J. Fluid Mech., 176, 67, 1987
  46. Wang JW, Ge W, Li JH, Chem. Eng. Sci., 63(6), 1553, 2008
  47. Rhodes MJ, Sollaart M, Wang XS, Powder Technol., 99(2), 194, 1998
  48. Monazam ER, Shadle LJ, Mei JS, Spenik J, Powder Technol., 155(1), 17, 2005
  49. Matonis D, Gidaspow D, Bahary M, AIChE J., 48(7), 1413, 2002
  50. Jiradilok V, Gidaspow D, Breault RW, Chem. Eng. Sci., 62(13), 3397, 2007
  51. Tartan M, Gidaspow D, AIChE J., 50(8), 1760, 2004
  52. Kashyap M, Chalermsinsuwan B, Gidaspow D, Particuology, 9(6), 572, 2011
  53. Campbell C, Wang D, J. Fluid Mech., 227, 495, 1991
  54. Cody GD, Goldfarb DJ, Storch GV, Norris AN, Powder Technol., 87(3), 211, 1996
  55. Gidaspow D, Lu HL, AIChE J., 42(9), 2503, 1996
  56. Polashenski W, Chen JC, Powder Technol., 90(1), 13, 1997
  57. Polashenski W, Chen JC, Ind. Eng. Chem. Res., 38(3), 705, 1999
  58. Jung J, Gidaspow D, Gamwo IK, Ind. Eng. Chem. Res., 44(5), 1329, 2005
  59. Jiradilok V, Gidaspow D, Damronglerd S, Koves WJ, Mostofi R, Chem. Eng. Sci., 61(17), 5544, 2006
  60. Jaiboon O, Chalermsinsuwan B, Mekasut L, Piumsomboon P, Chem. Eng. J., 219, 262, 2013
  61. Svoboda K, Kalisz S, Miccio F, Wieczorek K, Pohorely M, Powder Technol., 192(1), 65, 2009
  62. Miller A, Gidaspow D, AIChE J., 38, 1801, 1992
  63. Gidaspow D, Mostofi R, AIChE J., 49(4), 831, 2003