Issue
Korean Journal of Chemical Engineering,
Vol.31, No.2, 224-229, 2014
The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming
The carbon dioxide dry reforming of methane (CDR) reaction could be thermodynamically favored in the range of 800 to 1,000 ℃. However, the catalyst in this reaction should be avoided at the calcination temperature over 800 ℃ since strong metal support interaction (SMSI) in this temperature range can decrease activity due to loss of active sites. Therefore, we focused on optimizing the temperature of pretreatment and a comparison of surface characterization results for CDR. Results related to metal sintering over support, re-dispersion by changing of particle size of metal-support, and strong metal support interaction were observed and confirmed in this work. In our conclusion, optimum calcination temperature for a preparation of catalyst was proposed that 400 ℃ showed a higher and more stable catalytic activity without changing of support characteristics.
[References]
  1. Alyea EC, He D, Wang J, Appl. Catal. A, 104, 77, 1993
  2. Wang S, Lu GQM, Millar GJ, Energy Fuel, 624, 896, 1996
  3. Kim J, Kim T, Yoo JW, Lee KB, Hong SI, Korean J. Chem. Eng., 29(10), 1329, 2012
  4. Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, Korean Chem. Eng. Res., 35, 890, 1997
  5. Inui T, Ichino K, Matsuoka I, Takeguchi T, Iwamoto S, Pu SB, Nishimoto SI, Korean J. Chem. Eng., 14(6), 441, 1997
  6. Ruckenstein E, Wang HY, Appl. Catal. A: Gen., 204(2), 257, 2000
  7. Ferreira-Aparicio P, Guerrero-Ruiz A, Rodriguez-Ramos I, Appl. Catal. A: Gen., 170(1), 177, 1998
  8. Song SH, Lee SB, Bae JW, Prasad PSS, Jun KW, Shul YG, Catal. Lett., 129(1-2), 233, 2009
  9. Wang SB, Lu GQ, Millar GJ, Energy Fuels, 10(4), 896, 1996
  10. Song SH, Lee SB, Bae JW, Sai Prasad PS, Jun KW, Catal. Commun., 9, 2282, 2008
  11. Fan MS, Abdullah AZ, Bhatia S, ChemCatChem, 1, 192, 2009
  12. Reuel RC, Bartholomew CH, J. Catal., 85, 63, 1984
  13. Kogelbauer A, Weber JC, Goodwin JG, Catal. Lett., 34(3-4), 259, 1995
  14. Jozwiak WK, Szubiakiewicz E, Goralski J, Klonkowski A, Paryjczak T, Kinet. Catal., 45, 247, 2004
  15. Vansteen E, Sewell GS, Makhothe RA, Micklethwaite C, Manstein H, Delange M, Oconnor CT, J. Catal., 162(2), 220, 1996
  16. Chin RL, Hercules DM, J. Phys. Chem., 86, 360, 1982
  17. Riva R, Miessner H, Vitali R, Del Piero G, Appl. Catal. A: Gen., 196(1), 111, 2000
  18. Lapidus A, Krylova A, Kazanskii V, Borovkov V, Zaitsev A, Rathousky J, Zukal A, Jancalkova M, Appl. Catal., 73, 65, 1991
  19. Lapidus A, Krylova A, Rathousky J, Zukal A, Jancalkova M, Appl. Catal., 80, 1, 1992
  20. Lira E, Lopez CM, Oropeza F, Bartolini M, Alvarez J, Goldwasser M, Linares FL, Lamonier JF, Zurita MJP, J. Mol. Catal. A-Chem., 281(1-2), 146, 2008
  21. Jablonski JM, Okal J, Potoczna-Petru D, Krajczyk L, J. Catal., 220(1), 146, 2003
  22. Ernst B, Bensaddik A, Hilaire L, Chaumette P, Kiennemann A, Catal. Today, 39(4), 329, 1998
  23. Potoczna-Petru D, Jablonski JM, Okal J, Krajczyk L, Appl. Catal. A: Gen., 175(1-2), 113, 1998
  24. Petitto SC, Langell MA, J. Vac. Sci. Technol. A, 22(4), 1690, 2004
  25. Bradford MC, Vannice MA, Appl. Catal. A: Gen., 142(1), 73, 1996
  26. Cotton FA, Wilkinson G, Advanced Inorganic Chemistry, Fifth Ed., A Wiley-Interscience, New York, 1988
  27. Budiman AW, Song SH, Chang TS, Shin CH, Choi MJ, Catal. Surv. Asia, 16, 183, 2012