Issue
Korean Journal of Chemical Engineering,
Vol.30, No.4, 963-975, 2013
Comparisons of particle cluster diameter and concentration in circulating fluidized bed riser and downer using computational fluid dynamics simulation
The information of particle cluster dynamics is necessary for improving the performance of a circulating fluidized bed system. The main objective of this study is to compare the particle cluster diameters and concentrations from computational fluid dynamics simulation results between circulating fluidized bed riser and downer. The calculation methodologies are based on the concept of kinetic theory of granular flow and statistics. The mathematical model was verified by using the experimental dataset from literature and used for computing the particle cluster dynamics. In the circulating fluidized bed riser and downer, a dense and dilute core-annulus flow structures were obtained, respectively. The particle cluster in the circulating fluidized bed riser possessed more heterogeneity movements than that in the circulating fluidized bed downer. This can be explained by the system flow direction. About the particle cluster dynamics, the particle cluster diameters and concentrations in the circulating fluidized bed riser were higher than the ones in the downer. The calculated values were comparable to the empirical correlations. This confirms the validity of the calculation methodologies. Particle cluster dynamics and its example application inside circulating fluidized bed riser and downer were also discussed.
[References]
  1. Benyahia S, Arastoopour H, Knowlton TM, Massah H, Powder Technol., 112(1-2), 24, 2000
  2. Cheng Y, Wu CN, Zhu JX, Wei F, Jin Y, Powder Technol., 183(3), 364, 2008
  3. Chalermsinsuwan B, Kuchonthara P, Piumsomboon P, Chem. Eng. Process., 49(11), 1144, 2010
  4. Chalermsinsuwan B, Piumsomboon P, Gidaspow D, Chem. Eng. Sci., 64(6), 1212, 2009
  5. McKeen T, Pugsley T, Powder Technol., 129(1-3), 139, 2003
  6. Wang JW, Ge W, Li JH, Chem. Eng. Sci., 63(6), 1553, 2008
  7. Shah MT, Utikar RP, Tade MO, Pareek VK, Evans GM, Chem. Eng. Sci., 66(14), 3291, 2011
  8. Gidaspow D, Jiradilok V, J. Power Sources, 166(2), 400, 2007
  9. Levenspiel O, Chemical reaction engineering, John Wiley & Sons, New York, 1999
  10. Breault RW, Powder Technol., 163(1-2), 9, 2006
  11. Kashyap M, Gidaspow D, Powder Technol., 203(1), 40, 2010
  12. Chalermsinsuwan B, Piumsomboon P, Gidaspow D, Chem. Eng. Sci., 64(6), 1195, 2009
  13. Tuzla K, Sharma AK, Chen JC, Schiewe T, Wirth KE, Molerus O, Powder Technol., 100(2-3), 166, 1998
  14. Helland E, Occelli R, Tadrist L, Int. J. Multiphas. Flow., 28, 199, 2002
  15. Zhu JX, Yu ZQ, Jin Y, Grace JR, Issangya A, Can. J. Chem. Eng., 73(5), 662, 1995
  16. Manyele SV, Parssinen JH, Zhu JX, Chem. Eng. J., 88(1-3), 151, 2002
  17. Breault RW, Ludlow CJ, Yue PC, Powder Technol., 149(2-3), 68, 2005
  18. Chew JW, Hays R, Findlay JG, Knowlton TM, Karri SBR, Cocco RA, Hrenya CM, Chem. Eng. Sci., 68(1), 72, 2012
  19. Yerushalmi J, Cankurt NT, Geldart D, Liss B, AIChE Symp.Ser., 74, 1, 1976
  20. Gidaspow D, Tsuo YP, Luo KM, Computed and experimental cluster formation and velocity profiles in circulating fluidized beds, Fluidization IV, Alberta, Canada, 1989
  21. Horio M, Kuroki H, Chem. Eng. Sci., 49(15), 2413, 1994
  22. Tartan M, Gidaspow D, AIChE J., 50(8), 1760, 2004
  23. Jung J, Gidaspow D, Gamwo IK, Ind. Eng. Chem. Res., 44(5), 1329, 2005
  24. Xu J, Zhu JX, Chem. Eng. J., 168(1), 376, 2011
  25. Zhang MH, Chu KW, Wei F, Yu AB, Powder Technol., 184(2), 151, 2008
  26. Soong C, Tuzla K, Chen J, Identification of particle clusters in circulating fluidized bed, Circulating Fluidized Bed Technology Vol. IV, New York, USA, 1995
  27. Sharma AK, Tuzla K, Matsen J, Chen JC, Powder Technol., 111(1-2), 114, 2000
  28. Gomez LC, da Silva RC, Navarro HA, Milioli FE, Appl.Math. Model., 32, 327, 2007
  29. Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory description, Academic Press, Boston, 1994
  30. Breault RW, Powder Technol., 220, 79, 2012
  31. Guenther C, Breault R, Powder Technol., 173(3), 163, 2007
  32. Lints M, Glicksman LR, AIChE Symp. Ser., 89, 35, 1993
  33. Zou B, Li HZ, Xia YS, Ma XH, Powder Technol., 78(2), 173, 1994
  34. Gu WK, Chen JC, A model for solid concentration in circulating fluidized beds, Fluidization X., Durango, Colorado, USA, 1998
  35. Harris AT, Davidson JF, Thorpe RB, Powder Technol., 127(2), 128, 2002
  36. Knowlton T, Geldart D, Masten J, King D, Comparison of CFB hydrodynamic models, PSRI Challenge Problem Presented at the Eighth International Fluidization Conference, Tours, France, 1995
  37. Cao CS, Weinstein H, AIChE J., 46(3), 515, 2000
  38. Fluent Inc., Fluent 6.2 User’s Guide, Fluent Inc., Lebanon, 2005
  39. Chalermsinsuwan B, Chanchuey T, Buakhao W, Gidaspow D, Piumsomboon P, Chem. Eng. J., 189-190, 313, 2012
  40. Sun B, Gidaspow D, Ind. Eng. Chem. Res., 38(3), 787, 1999
  41. Yang N, Wang W, Ge W, Li JH, Chem. Eng. J., 96(1-3), 71, 2003
  42. Chalermsinsuwan B, Kuchonthara P, Piumsomboon P, Chem. Eng. Process., 48(1), 165, 2009
  43. Benyahia S, Arastoopour H, Knowlton TM, Chem. Eng. Commun., 189, 510, 2009
  44. Johnson PC, Jackson R, J. Fluid Mech., 176, 67, 1987
  45. Jiradilok V, Gidaspow D, Breault RW, Chem. Eng. Sci., 62(13), 3397, 2007
  46. Yang WC, Handbook of fluidization and fluid-particle systems, Marcel Dekker, Inc., New York, 2003
  47. Bolkan Y, Berruti F, Zhu J, Milne B, Powder Technol., 132(2-3), 85, 2003
  48. Zhang MH, Qian Z, Yu H, Wei F, Powder Technol., 129(1-3), 46, 2003
  49. Zhao YZ, Ding YL, Wu CN, Cheng Y, Powder Technol., 199(1), 2, 2010