Issue
Korean Chemical Engineering Research,
Vol.46, No.2, 408-413, 2008
저압급속열산화법과 플라즈마확산산화법에 의한 실리콘 산화박막의 제조
Fabrication of Ultrathin Silicon Oxide Layer by Low Pressure Rapid Thermal Oxidation and Remote Plasma Oxidation
본 연구에서는 5nm 이하의 실리콘 산화박막 성장을 위하여 저압급속열산화법과 플라즈마확산산화법을 사용하여, 실리콘 산화박막의 성장특성을 분석하였다. 저압급속열산화법으로 기판의 온도와 산소기체의 유량 변화에 따른 실리콘 산화박막의 성장은 공정시간 5분이 경과 할 때 까지 급격한 증가를 보이다 성장 속도가 포화되는 특성을 나타내었다. 또한 900 ℃에서 5 nm의 최대 두께를 가진 산화박막을 얻을 수 있었다. 플라즈마확산산화법은 기판의 온도와 압력은 500 ℃, 200 mTorr으로 고정했을 때, 플라즈마 세기와 산소기체의 유량이 증가할수록 산화박막의 성장속도는 증가하였다. 보통 4분이 경과한 후 성장속도가 포화영역에 도달하여 산화막의 두께가 거의 일정하게 되는 것을 알 수 있었다. 저압급속열산화법에 의해 성장된 산화박막은 일반열산화법에 의해 제조된 산화박막의 특성과 거의 같았다.
In this work, the use of LPRTO (low pressure rapid thermal oxidation) and remote plasma oxidation was evaluated for the preparation of ultra thin silicon oxide layer with less than 5 nm. The silicon oxide thickness grown by LPRTO was rapidly increased and saturated. The maximum thickness could be controlled at about 5 nm. As RF power and oxygen flow rate at a remote plasma oxidation increased, the behavior of oxide growth was almost the same as that of LPRTO. The oxide thickness of 4 nm was the maximum obtained by a remote plasma oxidation in this work. The quality of silicon oxide grown by LPRTO was comparable to the thermally grown conventional oxide.
[References]
  1. Batey J, Tierney E, J. Appl. Phys., 60(9), 3136, 1986
  2. Fountain GG, Rudder RA, Hattangrady SV, Markunas RJ, Lindorme PS, J. Appl. Phys., 63(9), 4744, 1988
  3. Landheer D, Xu DX, Tao Y, Sproule GI, J. Appl. Phys., 77(4), 1600, 1995
  4. Furukawa K, Liu Y, Gao D, Nakashima H, Uchino K, Muraoke K, Appl. Surf. Sci., 121/122, 228, 1997
  5. Welsch E, Walther HG, Schafer D, Wolf R, Muller H, Thin Solid Films, 156(1), 1, 1988
  6. Robles S, Yieh E, Nguyen BC, J. Electrochem. Soc., 142(2), 580, 1995
  7. Pliskin WA, Lehman HS, J. Electrochem. Soc., 112(10), 1013, 1965
  8. Chang KM, Li CH, Fahn FJ, Tsai JY, Yeh TH, Wang SW, Yang JY, J. Electrochem. Soc., 144(1), 311, 1997
  9. Nayar V, Botd IW, Goodall FN, Arthur G, Appl. Surf. Sci., 36(1-4), 134, 1989
  10. Fiegna C, Iwai H, Wada T, Saito M, Sangiorgi E, Ricco B, IEEE Trans. Electron Devices, 41(6), 941, 1994
  11. Queeney KT, Weldon MK, Chang JP, Chabal YJ, Gurevich AB, Sapjeta J, Opila RL, J. Appl. Phys., 87(3), 1322, 2000
  12. Lucovsky G, Manitini MJ, Srivastava JK, Irene EA, J. Vac. Sci. Technol. B, 5(2), 530, 1987
  13. Carl DA, Hess DW, Lieberman MA, J. Vac. Sci. Technol. A, 8(3), 2924, 1990
  14. Shufflebotham PK, Thomson DJ, Card HC, J. Appl. Phys., 64(9), 4398, 1988
  15. Chau TT, Kao KC, J. Vac. Sci. Technol. B, 14(1), 527, 1996
  16. Coleman WJ, Appl. Optics, 13(4), 946, 1974
  17. Raider SI, Flitsch, IBM J. Res. Dev., 22(3), 294, 1978