ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 24, 2020
Accepted December 23, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Facile bioconversion of vegetable food waste into valuable organic acids and green fuels using synthetic microbial consortium

Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, Chhattisgarh 493225, India
Korean Journal of Chemical Engineering, April 2021, 38(4),
10.1007/s11814-020-0735-7
downloadDownload PDF

Abstract

The production of various organic acids from vegetable waste via a facile and cost-effective method utilizing characterized synthetic microbial consortia is described in this study. Five bacterial species with the ability to produce organic acids from vegetable waste biomass were isolated and identified as Lactobacillus casei, Lactobacillus acidophilus, Bacillus megaterium, Pseudomonas florescence and Escherichia coli. Using these cultures, mixed acid fermentation was developed and was efficient in producing various organic acids. The total organic acids accumulated using optimized fermentation conditions was found to be 72.44±3.43 g L-1. The acetic acid was produced as major acid accumulated up to 25.27±1.26 g L-1, followed by lactic acid 19.11±1.73 g L-1. Efforts were also put forth to check the ability to produce methane by the anaerobic digestion process. Up to 14.97mL g-1 biomass methane was produced during the anaerobic digestion process. The technology developed in this study is a carbon-neutral process for managing vegetable food waste with economic benefit. The developed technology will have great economic potential and add value to vegetable food waste management.

References

Sauer M, Porro D, Mattanovich D, Branduardi P, Trends Biotechnol., 26, 100 (2008)
Sudheer PDVN, Yun J, Chauhan S, Kang TJ, Choi KY, Biotechnol. Bioproc. E., 22, 717 (2017)
Sudheer PDVN, Seo D, Kim EJ, Chauhan S, Chunawala JR, Choi KY, Enzyme Microb. Technol., 119, 45 (2018)
Agler MT, Wrenn BA, Zinder SH, Angenent LT, Trends Biotechnol., 29, 70 (2011)
Murto M, Bjornsson L, Mattiasson B, J. Environ. Manage., 70, 101 (2004)
Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z, Bioresour. Technol., 268, 773 (2018)
Ayudthaya SPN, van de Weijer AHP, van Gelder AH, Stams AJM, de Vos WM, Plugge CM, Biotechnol. Biofuels, 11, 13 (2018)
Lim SJ, Kim BJ, Jeong CM, Choi JDR, Ahn YH, Chang HN, Bioresour. Technol., 99(16), 7866 (2008)
Johnson J, Sudheer PDVN, Yang YH, Kim YG, Choi KY, Biotechnol. Bioproc. E., 22, 450 (2017)
AOAC; AOAC, Arlington, Virginia. Achi, O. K (1990).
Akerberg C, Zacchi G, Bioresour. Technol., 75(2), 119 (2000)
Miller GL, Anal. Chem., 31, 426 (1959)
Ma Y, Tie Z, Zhou M, Wang N, Cao X, Xie Y, Anal. Methods, 8, 3839 (2016)
John RP, Sukumaran RK, Nampoothiri KM, Pandey A, Biochem. Eng. J., 36, 262 (2007)
Shan JJ, Li MW, Allard LF, Lee SS, Flytzani-Stephanopoulos M, Nature, 551(7682), 605 (2017)
Lee OK, Hur DH, Nguyen DTN, Lee EY, Biofuel Bioprod Biorefin., 10, 848 (2016)
Poe NE, Yu D, Jin Q, Ponder MA, Stewart AC, Ogejo JA, Wang H, Huang H, Waste Manage., 107, 150 (2020)
Sudheer PDVN, et al., Biotechnology for biofuels: A sustainable green energy solution, Springer Singapore, Singapore, 61 (2020).
Zamanzadeh M, Hagen LH, Svensson K, Linjordet R, Horn SJ, Sci. Rep., 7, 17664 (2017)
Singh CK, Kumar A, Roy SS, Sci. Rep., 8, 2913 (2018)
Lu J, Lv Y, Qian X, Jiang Y, Wu M, Zhang W, Zhou J, Dong W, Xin F, Jiang M, Biofuel Bioprod Biorefin., 141, 481 (2020)
Che S, Men Y, J. Ind. Microbiol. Biotechnol., 46, 1343 (2019)
Liang S, McDonald AG, Coats ER, Waste Manage., 34, 2022 (2014)
Atasoy M, Eyice O, Schnurer A, Cetecioglu Z, Bioresour. Technol., 292, 121889 (2019)
Li Y, Park SY, Zhu J, Renew. Sust. Energ. Rev., 15, 821 (2011)
Alcantara-Hernandez RJ, Tas N, Carlos-Pinedo S, Duran-Moreno A, Falcon LI, Lett. Appl. Microbiol., 64, 438 (2017)
Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y, Microb. Ecol., 56, 403 (2008)
Srivastava SK, Waste Dispos. Sustain. Energy, 2, 85 (2020)
Paritosh K, Yadav M, Mathur S, Balan V, Liao W, Pareek N, Vivekanand V, Front. Energy Res., 6, 75 (2018)

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로