ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 15, 2016
Accepted December 23, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Methane steam reforming in a membrane reactor using high-permeable and low-selective Pd-Ru membrane

Advanced Materials and Devices Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34128, Korea 1Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu, 13-13 Hayang-yep, Gyeongsan, Gyeongbuk 38430, Korea 2Department of Advanced Materials Engineering, Kyonggi University, 94-6, Yiui-dong, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Korea
h2membrane@kier.re.kr
Korean Journal of Chemical Engineering, April 2017, 34(4), 1260-1265(6)
https://doi.org/10.1007/s11814-016-0359-0
downloadDownload PDF

Abstract

We performed a methane steam reforming (MSR) reaction through a membrane reactor packed with commercial Ni/Al2O3 catalyst and a tubular Pd-Ru membrane deposited on a YSZ modified porous stainless steel support under mild operating conditions: 773 K and a pressure difference range of 100-250 kPa. We prepared the Pd-Ru membrane with thickness of ~6 μm on a tubular stainless steel support (diameter 12.7mm, length 25 cm) using electroless plating, which was observed for the membrane performance using hydrogen and nitrogen. Gas permeation test carried out at 773 K and 31.4 kPa of pressure difference between retentate and permeate sides showed that the hydrogen permeation rate and nitrogen leakage were ~0.1050mol s-1 m-2 and ~0.0018 mol s-1 m-2, respectively. The MSR reaction was under the following conditions: temperature 773 K, pressure 100-250 kPa, gas hourly space velocity (GHSV) 837 h-1, and steam-to-carbon feed ratio (S/C) 3. The MSR reaction result showed that methane conversion was increased with increasing pressure difference and reached ~77.5% at 250 kPa. In this condition, the composition of carbon monoxide was ~2%, meaning that no two series of water gas shift reactors were needed in our membrane reactor system. Longterm stability test carried out for ~100 h showed that methane conversion and the hydrogen yield remained constant.

References

Barelli L, Bidini G, Gallorini F, Servili S, Energy, 33(4), 554 (2008)
Chen LW, Hong Q, Lin JY, Dautzenberg FM, J. Power Sources, 164(2), 803 (2007)
BHARADWAJ SS, SCHMIDT LD, Fuel Process. Technol., 42(2-3), 109 (1995)
Levent M, Gunn DJ, El-Bousiffi MA, Int. J. Hydrog. Energy, 28(9), 945 (2003)
Shu J, Grandjean BP, Kaliaguine S, Catal. Today, 25(3-4), 327 (1995)
Matsumura Y, Nakamori T, Appl. Catal. A: Gen., 258(1), 107 (2004)
Pistonesi C, Juan A, Irigoyen B, Amadeo N, Appl. Surf. Sci., 253(9), 4427 (2007)
Uemiya S, Sato N, Ando H, Matsuda T, Kiluchi E, Appl. Catal., 67, 223 (1990)
Jorgensen SL, Nielsen PE, Lehrmann P, Catal. Today, 25(3-4), 303 (1995)
Aasberg-Petersen K, Nielsen CS, Jorgensen SL, Catal. Today, 46(2-3), 193 (1998)
Kikuchi E, Nemoto Y, Kajiwara M, Uemiya S, Kojima T, Catal. Today, 56(1-3), 75 (2000)
Kikuchi E, Catal. Today, 56(1-3), 97 (2000)
Lin YM, Liu SL, Chuang CH, Chu YT, Catal. Today, 82(1-4), 127 (2003)
Tong H, Matsumura Y, Catal. Today, 111(3-4), 147 (2006)
Roses L, Gallucci F, Manzolini G, Annaland MV, Chem. Eng. J., 222, 307 (2013)
Bredesen R, Jordal K, Bolland O, Chem. Eng. Process., 43, 1129 (2004)
Iulianelli A, Manzolini G, De Falco M, Campanari S, Longo T, Liguori S, Basile A, Int. J. Hydrog. Energy, 35(20), 11514 (2010)
Oyama ST, Lim H, Chem. Eng. J., 151(1-3), 351 (2009)
Ryi SK, Park JS, Hwang KR, Kim DW, An HS, Korean J. Chem. Eng., 29(1), 59 (2012)
Ryi SK, Han JY, Seo BS, Proceedings of the 21st World Hydrogen Energy Conference, Zaragoza, June 13-16 (2016).
Ryi SK, Xu N, Li AW, Lim CJ, Grace JR, Int. J. Hydrog. Energy, 35(6), 2328 (2010)
Ryi SK, Lee SW, Oh DK, Seo BS, Park JW, Park JS, Lee DW, Kim SS, J. Membr. Sci., 467, 93 (2014)
Seo BS, Han JY, Lee KY, Kim DW, Ryi SK, Korean J. Chem. Eng., DOI:10.1007/s11814-016-0256-6 1. (2016)
Nam SW, Yoon SP, Ha HY, Hong SA, Maganyuk AP, Korean J. Chem. Eng., 17(3), 288 (2000)
Tong JH, Matsumura Y, Appl. Catal. A: Gen., 286(2), 226 (2005)
Saric M, van Delft YC, Sumbharaju R, Meyer DF, de Groot A, Catal. Today, 193(1), 74 (2012)
Kume T, Ikeda Y, Iseki T, Yakabe H, Tanaka H, Hikosaka H, Takagi Y, Ito M, Int. J. Hydrog. Energy, 38(14), 6079 (2013)
Dittmar B, Behrens A, Schodel N, Ruttinger M, Franco T, Straczewski G, Dittmeyer R, Int. J. Hydrog. Energy, 38(21), 8759 (2013)
Hava HWAE, Paglieri SN, Morris CC, Harale A, Way JD, Sep. Purif. Technol., 147, 338 (2015)
Abu El Hawa HW, Lundin STB, Patki NS, Way JD, Int. J. Hydrog. Energy, 41(24), 10193 (2016)
Ryi SK, Han JY, Kim CH, Seo BS, Korean J. Chem. Eng., 33(9), 2699 (2016)
Ryi SK, Park JS, Kim DK, Kim TH, Kim SH, J. Membr. Sci., 339(1-2), 189 (2009)

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로