ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 5, 2016
Accepted December 23, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: A statistical optimization and neural network-based approach

Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
veeranki@iitg.ernet.in
Korean Journal of Chemical Engineering, April 2017, 34(4), 1109-1121(13)
https://doi.org/10.1007/s11814-016-0358-1
downloadDownload PDF

Abstract

Medium development for high level expression of human interferon gamma (hIFN-γ) from Pichia pastoris (GS115) was performed with the aid of statistical and nonlinear modeling techniques. In the initial screening, gluconate and glycine were found to be key carbon and nitrogen sources, showing significant effect on production of hIFN-γ. Plackett-Burman screening revealed that medium components., gluconate, glycine, KH2PO4 and histidine, have a considerable impact on hIFN-γ production. Optimization was further proceeded with Box-Behnken design followed by artificial neural network linked genetic algorithm (ANN-GA). The maximum production of hIFN-γ was found to be 28.48mg/L using Box-Behnken optimization (R2=0.98), whereas the ANN-GA based optimization had displayed a better production rate of 30.99mg/L (R2=0.98), with optimal concentration of gluconate=50 g/L, glycine=10.185 g/L, KH2PO4=35.912 g/L and histidine 0.264 g/L. The validation was carried out in batch bioreactor and unstructured kinetic models were adapted. The Luedeking-Piret (L-P) model showed production of hIFN-γ was mixed growth associated with the maximum production rate of 40mg/L of hIFN-γ production.

References

Gray PW, Goeddel DV, Nature, 298, 859 (1982)
Younes HM, Amsden BG, J. Pharm. Sci., 91, 2 (2002)
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, Yeast, 22, 249 (2005)
Cos O, Ramon R, Montesinos JL, Valero F, Microb. Cell Factories, 5, 17 (2006)
Idiris A, Tohda H, Kumagai H, Takegawa K, Appl. Microbiol. Biotechnol., 86(2), 403 (2010)
Plantz BA, Sinha J, Villarete L, Nickerson KW, Schlegel VL, Appl. Microbiol. Biotechnol., 72(2), 297 (2006)
Potvin G, Ahmad A, Zhang Z, Biochem. Eng. J., 64, 91 (2012)
Zhang W, Liu H, Chen J, Biochem. Eng. J., 12, 1 (2002)
Zhang WH, Sinha J, Meagher MM, Appl. Microbiol. Biotechnol., 72(1), 139 (2006)
Ghosalkar A, Sahai V, Srivastava A, Bioresour. Technol., 99(16), 7906 (2008)
Sola A, Maaheimo H, Ylonen K, Ferrer P, Szyperski T, Eur. J. Biochem., 271, 2462 (2004)
Brierley RA, Bussineau C, Kosson R, Melton A, Siegel RS, Ann. N. Y. Acad. Sci., 589, 350 (1990)
Thorpe ED, d'Anjou MC, Daugulis AJ, Biotechnol. Lett., 21(8), 669 (1999)
Xie JL, Zhou QW, Peng D, Gan RB, Qin Y, Enzyme Microb. Technol., 36(2-3), 210 (2005)
“Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale | Science.” Available: http://science.sciencemag.org/content/278/5338/680.long (2016).
Magasanik B, Cold Spring Harb. Monogr. Arch., 21, 283 (1992)
Dasu VV, Panda T, Bioprocess Eng., 22, 45 (2000)
Sivapathasekaran C, Mukherjee S, Ray A, Gupta A, Sen R, Bioresour. Technol., 101(8), 2884 (2010)
Yu Y, Zhou X, Wu S, Wei T, Yu L, Electron. J. Biotechnol., 17, 311 (2014)
Kumar S, Pakshirajan K, Dasu VV, Appl. Microbiol. Biotechnol., 84(3), 477 (2009)
Yasin Y, Ahmad FBH, Ghaffari-Moghaddam M, Khajeh M, Environ. Nanotechnol. Monit. Manag., 1, 2 (2014)
Prabhu AA, Veeranki VD, Dsilva SJ, Process Biochem., 51(6), 709 (2016)
Plackett RL, Burman JP, Biometrika., 33, 305 (1946)
Box GEP, Behnken DW, Technometrics, 2, 455 (1960)
Maran JP, Manikandan S, Priya B, Gurumoorthi P, J. Food Sci. Technol., 52, 92 (2013)
Song X, Mitnitski A, MacKnight C, Rockwood K, J. Am. Geriatr. Soc., 52, 1180 (2004)
Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS, Biochem. Eng. J., 41, 266 (2008)
Khayet M, Cojocaru C, Sep. Purif. Technol., 86, 171 (2012)
Christova P, Todorova K, Timtcheva I, Nacheva G, Karshikoff A, Nikolov P, Zeitschrift Fur Naturforschung., 58, 288 (2003)
Jungo C, Schenk J, Pasquier M, Marison IW, von Stockar U, J. Biotechnol., 131, 57 (2007)
Bianchi D, Bertrand O, Haupt K, Coello N, Enzyme Microb. Technol., 28(9-10), 754 (2001)
Choi JH, Lee SY, Appl. Microbiol. Biotechnol., 64(5), 625 (2004)
Yang J, Moyana T, MacKenzie S, Xia Q, Xiang J, Appl. Environ. Microbiol., 64, 2869 (1998)
Klockner W, Buchs J, Trends Biotechnol., 30, 307 (2012)
Batra J, Beri D, Mishra S, Appl. Biochem. Biotechnol., 172, 380 (2013)
Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA, Gene, 190, 55 (1997)
Hu SY, Li LW, Qiao JJ, Guo YJ, Cheng LS, Liu J, Protein Expr. Purif., 47(1), 249 (2006)
Prabhu AA, Chityala S, Garg Y, Dasu VV, Prep. Biochem. Biotechnol., 1, 1 (2016)
Prabhu AA, Jayadeep A, Prep. Biochem. Biotechnol., 1 (2016)

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로