Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.44, No.5, 498-504, 2006
고밀도 CHF3 플라즈마에서 바이어스 전압과 이온의 입사각이 Photoresist의 식각에 미치는 영향
Effects of Bias Voltage and Ion-incident Angle on the Etching of Photoresist in a High-density CHF3 Plasma
고밀도 CHF3 플라즈마를 이용한 식각에서 photoresist(PR)의 식각속도 및 SiO2의 PR에 대한 식각 선택도가 이온의 입사 각도에 따라 변화하는 특성을 관찰하였다. 플라즈마 내에 파라데이 상자를 설치하여 이온의 입사 각도를 조절하였으며, 바이어스 전압을 변화시켜 이온의 입사 에너지를 조절하였다. 대부분의 바이어스 전압에서 SiO2의 식각속도는 이온입사각도가 증가함에 따라 단조 감소함에 비해 PR의 식각속도는 중간각도 영역까지 일정하다가 그 이후에 감소하기 시작하였다. 이온입사각도가 0o인 조건에서의 식각속도를 기준으로 정규화된 식각속도(NER)는 SiO2의 경우 cosine 함수와 거의 일치하였으나 PR의 경우 중간각도영역에서 over-cosine 형태를 보였다. PR에 대한 SiO2의 식각선택도는 이온입사각도에 따라 점차로 감소하였는데, 이는 PR이 SiO2에 비해 중간각도에서 물리적 스퍼터링에 의해 식각 수율이 크게 증가하였기 때문이다. 또한, 바이어스 전압의 증가에 따라 PR에 대한 식각선택도는 대부분의 이온입사각도에서 감소하였다.
The etch rates of photoresist (PR) and the etch selectivity of SiO2 to PR in a high density CHF3 plasma were investigated at different ion-incident angles and bias voltages. A Faraday cage was employed for the accurate control of ion-incident angles. The ion energy was controlled by changing bias voltages. The etch rate of SiO2 continuously decreased with ion-incident angles but the etch rate of PR remained constant up to the middle angle region and decreased afterwards. The etch rates of SiO2 normalized to those at 0o incident angle changed with the ion-incident angle following a cosine(θ) curve. On the other hand, the normalized etch rates of the PR changed showing a drastic overcosine shape in the middle angle region. The etch selectivity of SiO2 to PR decreased with an increase in the ion-incident angle because the etch yields of PR were enhanced by physical sputtering in the middle angle region compared to the case of SiO2 etching. The etch selectivity of SiO2 to PR decreased with an increase in the bias voltage at nearly all ion-incident angles.
[References]
  1. Samukawa S, Mukai T, J. Vac. Sci. Technol. B, 18(1), 166, 2000
  2. Cho BO, Hwang SW, Lee GR, Moon SH, J. Vac. Sci. Technol. A, 18(6), 2791, 2000
  3. Gray DC, Mohindra V, Sawin HH, J. Vac. Sci. Technol. A, 12(2), 354, 1994
  4. Lee RE, J. Vac. Sci. Technol. A, 16, 164, 1979
  5. Chen FF, Chang JP, “Lecture Notes on Principles of Plasma Processing,” Kluwer Academic/Plenum Publishers, 2003
  6. Barish EL, Vitkavage DJ, Mayer TM, J. Appl. Phys., 57, 1336, 1985
  7. Coburn JW, J. Appl. Phys., 50, 5210, 1979
  8. Oehrlein GS, Williams HL, J. Appl. Phys., 62, 662, 1987
  9. Oehrlein GS, Robey SW, Lindstrom JL, Chan KK, Kaso MA, Scilla GJ, J. Electrochem. Soc., 136, 2050, 1989
  10. Oehrlein GS, Zhang Y, Vender D, Joubert O, J. Vac. Sci. Technol. A, 12(2), 333, 1994
  11. Rueger NR, Beulens JJ, Schaepkens M, Doemling MF, Mirza JM, Standaert TE, Oehrlein GS, J. Vac. Sci. Technol. A, 15(4), 1881, 1997
  12. Schaepkens M, Standaert TEFM, Rueger NR, Sebel PGM, Oehrlein GS, Cook JM, J. Vac. Sci. Technol. A, 17(1), 26, 1999
  13. Vender D, Haverlag M, Oehrlein GS, Appl. Phys. Lett., 61, 3136, 1998
  14. Standaert TEFM, Hedlund C, Joseph EA, Oehrlein GS, Dalton TJ, J. Vac. Sci. Technol. A, 22(1), 53, 2004
  15. Butterbaugh JW, Gray DC, Sawin HH, J. Vac. Sci. Technol. B, 9(3), 1461, 1991
  16. Ikegami N, Ozawa N, Miyakawa Y, Hirashita N, Kanamori J, Jpn. J. Appl. Phys., 31, 2020, 1992
  17. Pelletier J, J. Phys. D-Appl. Phys., 20, 858, 1987