Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.4, 463-466, 2000
반도체 칩 패키지용 액상 봉지재의 점도거동 연구
Study on the Viscosity Behaviors of Liquid Encapsulant for Semi-Conductor Chip Packaging
반도체용 액상 봉지재에는 많운 양의 실리카가 충전제로서 쓰이고 있는데 실리카의 농도 및 종류에 따라 점도거동이 크게 변한다. 본 연구에서는 실리가 함량과 입자크기 등이 변화할 때 액상보지재의 점도거동이 어떻게 변하는지를 살펴보았다. 또한, 그러한 점도거동을 충전제 함량과 입자의 모양 그리고 압자의 크기와 크기분포에 의한 영향이 고려될 수 있는 Mooney의 식을 사용하여 예측해 보았다. 실험결과, 액상 봉지재의 고유점도와 상대점도는 실리카의 평균입자크기에 따라 다른 값을 나타내었다. 그러므로, Mooney식에 있는 고유점도의 경우 기존에는 입자크기의 무관하게 2.5로서 나타내졌는데 이 고정된 값으로는 입자크기에 따라 점도가 다르게 나타나는 본 액상 봉지재의 점도거동예측에 사용될 수 없었으며 입자 크기에 따라 실험에 의해 결정된 값을 사용할 때 보다 정확한 예측이 가능해였다. 최대충전율의 경우 입자크기의 분포를 고려하여 결정될 때 보다 정확한 점도거동 예측이 가능할 것으로 예상된다.
Because the encapsulants for semi-conductors contain high concerntration of silica as a filler,the viscosity behaviors of them largely depend on the content and the type of silicas. This study investigated the effects of the content and the average size of silica on the viscosity behaviors of the liquid encapsulant before curing. And such viscosity behaviors were fitted using a Mooney equation, which can consider the effects of content, shape, size and size distribution of fillers on the viscosity. Experimental results showed that both of intrinsic and relative viscosity depended on the average size of silica. Therefore, with the previous value of intrinsic viscosity, 2.5, which have been used independently for the size of fillers, the Mooney equation could not fit well the experimental data. More accurate fitting was made by using the experimentally determined intrinsic viscosities of each size of silicas. Moreover, the better predictions are expected to be possible by using the maximum packing fraction determined by considering the size distribution of silica.
[References]
  1. Shi S, Jefferson G, Wong CP, 1997 Int. Symp. on Adv. Packaging Materials, Braselton, Geogia, U.S.A., 42, 1997
  2. Baliga J, Semicond. Int., March, 87, 1998
  3. Markstein HW, Electronic Packaging Prod., April, 33, 1998
  4. Matthew KS, William HL, IEEE Trans. Compon. Packag. Manuf. Technol. Part C, 19(2), 133, 1996
  5. Han S, Wang KK, IEEE Trans. Compon. Packag. Manuf. Technol. Part B Adv. Packag., 20(4), 424, 1997
  6. Mooney M, J. Colloid Sci., 6, 162, 1951
  7. Einstein A, Annu. Phys., 34, 591, 1911
  8. Miles IS, Rostami S, "Multicomponent Polymer Systems," Polymer Science and Technology Series, Longman Science & Technical, New York, 1992
  9. Kim IB, Bae DH, Lee MC, Lee ES, Yun HC, Lim JC, J. Korean Ind. Eng. Chem., 10(6), 949, 1999