Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.32, No.2, 121-132, 1994
저압화학증착공정에성의 텅스텐 박막의 층덮힘에 관한 실험 및 이론적 연구
Experimental and Theoretical Study of Step Coverage in LPCVD of Tungsten
도랑의 선폭이 1㎛이하로 감소하고 3차원적인 다층배선의 연결구멍이 사용됨에 따라 층덮힘 불량으로 인한 빈 공간의 형성은 소장의 신뢰도에 치명적인 영향을 준다. 이러한 문제를 해결하기 위하여 층덮힘에 관한 근본적인 분석이 필요하며 이를 위하여 본 연구에서는 저압화학증착공정의 층덮힘에 관한 근본적인 분석이 필요하며 이를 위하여 본 연구에서는 저압화학증착공정의 층덮힘에 관한 이론적인 연구와 화학증착실험을 수행하였다. 이론적인 연구에서는 흡착, 재방출, 표면확산을 고려한 미세박막패턴 모델을 제시하고 string법과Monte Carlo 법을 이용하여 전산모사를 수행함으로서 각 메카니즘의 영향을 분석하였다. 층덮힘은 부착계수와 종횡비가 감소할수록, 표면확산이 증가할수록 개선되었다. 또한 본 연구에서는 도랑의 구조적 형태에 따른 영향을 살펴보기 위하여 도랑 옆벽면의 기울기와 도랑 모서리의 형태를 변화시키면서 층덮힘을 분석하였다. 그리고 cosine 재방출 메카니즘외에 다른 재방출 메카니즘을 조사한 결과 거울반사 재방출의 경우 층덮힘이 가장 좋은 것으로 나타났다. 실험은 WF6 의 SiH4 환원반응에 의한 텅스텐 저압화학증착을 대상으로 하였는데 실험결과와 전산모사 결과는 잘 일치하였으며, 이 때 얻어진 부착계수로 조업조건이 층덮힘에 미치는 영향을 분석하였다. 온도가 올라갈수록 층덮힘은 악화되는 것으로 밝혀졌으며 부착계수의 활성화에너지는 13.0 kcal/mol로 나타났다. 운송기체의 종류에 따른 층덮힘은 Ar, H2, He 순으로 나빠졌다. 따라서 텅스텐 화학증착인 경우 Ar 을 사용한 저온공정에서 좋은 층덮힘이 이루어짐을 알 수 있었다.
As the feature size of trench or via hole decreases below 1㎛, a void formation caused by nonconformal step coverage leads to serious problems in the reliability of integrated circuits. In this study, theoretical study and experiment for tungsten film deposition were conducted to find a was to improve the step coverage. In the theoretical part, a microscopic shape evolution model(MSEM) considering adsorption, re-emission, and surface diffusion was proposed and numerical simulation based on string algorithm and Monte Carlo method was performed to examine the effect of various mechanisms. The step coverage was better for lower sticking coefficient( ), smaller aspect ratio, and larger surface diffusion. In addition, the dependence of step coverage on the trench shape and various re-emission mechanisms for various was investigated. Experimental results from SiH4-reduced LPCVD of tungsten films were compared with was 13.0 kcal/mol. for Ar, H2, He at 275℃, 0.3 mbar, WF6/SiH4/carrier gas=10/10/200 sccm were 0.04, 0.10, and 0.29, respectively, implying that a low temperature process using Ar carrier gas is preferred for better step coverage.
[References]
  1. McConica C, Krishnamani K, "Tungsten and Other Refractory Metals for VLSI Applications," Blewer, R.S., ed., Materials Research Soc. Pitts-burgh, PA, 433, 1986
  2. vander Putte P, "Tungsten and Other Refractory Metals for VLSI Applications II," Broadbent, E.K., ed., Materials Research Soc., Pittsburgh, PA, 77, 1987
  3. Lifshitz N, "Tungsten and Other Refractory Metals for VLSI Applications III," Wells, V.A., ed., Materials Research Soc., Pennsylvania, 83, 1988
  4. Inamdar AS, McConica CM, "Tungsten and Other Refractory Metals for VLSI Applications IV," Blewer, R.S. and McConica, C.M., Eds., Materials REsearch Soc., Pittsburgh, PA, 197, 1989
  5. Schmitz JEJ, vander Sluys WLN, Montree AH, "Tungsten and Other Advanced Metals for VLSI/ULSI Applications V," Wong, S.S. and Furukawa, S., Ed., Materials Research Soc., Pitts-burgh, PA, 117, 1990
  6. Bradbury DR, Kruger JB, Young KK, Chiu KY, Gleason R, "Tungsten and Other Advanced Metals for ULSI Applications in 1990," Smith, G.C. and Blumenthal, R., Ed., Materials Research Soc., Pittsburgh, PA, 125, 1991
  7. Neureuther AR, Ting CH, Liu CY, IEEE Trans. Electron Devices, 27, 1449, 1980
  8. McConica CM, Churchill S, "Tungsten and Other Refractory Metals for VLSI Applications III," Wells, V.A., Eds., Materials Research Soc., Pennsylvania, 257, 1988
  9. Hasper A, Holleman J, Middelhoek J, Kleijn CR, Hoogendoorn CJ, J. Electrochem. Soc., 138, 1728, 1991
  10. Yuuki A, Matsui Y, Tachibana K, Jpn. J. Appl. Phys., 28, 212, 1989
  11. Ikegawa M, Kobayashi J, J. Electrochem. Soc., 136, 2982, 1989
  12. Rey JC, Cheng LY, McVittie JP, Saraswat KC, J. Vac. Sci. Technol. A, 9, 1083, 1991
  13. Wulu HC, Saraswat KC, McVittie JP, J. Electrochem. Soc., 138, 1831, 1991
  14. Tait RN, Smy T, Brett MJ, Thin Solid Films, 187, 375, 1990
  15. Smy T, Westra KL, Brett MJ, IEEE Trans. Electron Devices, 37, 591, 1990
  16. Cale TS, Gandy TH, Raupp BG, J. Vac. Sci. Technol. A, 9, 524, 1991
  17. West LA, Somorjai GA, J. Chem. Phys., 57, 5143, 1972
  18. Bernasek SL, Somorjai GA, J. Chem. Phys., 60, 4552, 1974