Issue
Korean Journal of Chemical Engineering,
Vol.29, No.8, 975-984, 2012
Optimal strategy for carbon capture and storage infrastructure: A review
To effectively reduce CO2, CO2 mitigation technologies should be employed tactically. This paper focuses on carbon capture and storage (CCS) as the most promising CO2 reduction technology and investigates how to establish CCS strategy suitably. We confirm a major part of the optimal strategy for CCS infrastructure planning through a literature review according to mathematical optimization criteria associated with facility location models. In particular, the feasibility of large scale CCS infrastructure is evaluated through economic, environmental, and technical assessment. The current state-of-the-art optimization techniques for CCS infrastructure planning are also addressed while taking numerous factors into account. Finally, a list of issues for future research is highlighted.
[References]
  1. IEA, Energy Technology Perspectives, 2006
  2. Metz M, IPCC special report on carbon dioxide capture and storage 2005: Cambridge University Press.
  3. Han JH, Lee IB, Ind. Eng. Chem. Res., 50(10), 6297, 2011
  4. Melo MT, Nickel S, Saldanha-da-Gama F, European J. Operational Res., 196(2), 401, 2009
  5. Jakobsen JP, Brunsvold A, Husebye J, Hognes ES, Myhrvold T, Friis-Hansen P, Hektor EA, Torvanger A, Comprehensive assessment of CCS chains - Consistent and transparent methodology., Amsterdam, 2011
  6. Rao AB, Rubin ES, Environ. Sci. Technol., 36(20), 4467, 2002
  7. McCoy ST, Rubin ES, Int. J. Greenhouse Gas Control., 2(2), 219, 2008
  8. Rao AB, Rubin ES, Keith DW, Morgan MG, Energy Policy, 34(18), 3765, 2006
  9. McCollum DL, Ogden JM, Techno-Economic Models for Carbon Dioxide Compression, Transport and Storage & Correlations for estimating Carbon Dioxide Density and Viscosity, UCDITS-RR-06-14, 2006
  10. Zahid U, Lim Y, Jung J, Han C, Korean J. Chem. Eng., 28(3), 674, 2011
  11. Lauer M, Methodology guideline on techno economic assessment (TEA), Workshop WP3B Economics, Methodology Guideline, 2008
  12. Bey RB, Doersch RH, Patterson JH, Project Management Quarterly., 12(2), 35, 1981
  13. Bakken BH, Velken IV, IEEE Trans. Energy Convers., 23(3), 824, 2008
  14. Svensson R, Odenberger M, Johnsson F, Stromberg L, Energy Conv. Manag., 45(15-16), 2343, 2004
  15. McCoy ST, Rubin ES, Models of CO2 transport and storage costs and their importance in CCS cost estimates, Proceedings of the Fourth Annual Conference on Carbon Capture and Sequestration DOE/NETL, 2005
  16. van den Broek M, Faaij A, Turkenburg W, Int. J. Greenhouse Gas Control., 2(1), 105, 2008
  17. van den Broek M, Ramirez A, Groenenberg H, Neele F, Viebahn P, Turkenburg W, Faaij A, Int. J. Greenhouse Gas Control., 4(2), 351, 2010
  18. Damen K, Faaij A, Turkenburg W, Int. J. Greenhouse Gas Control., 3(2), 217, 2009
  19. Middleton RS, Bielicki JM, Energy Policy, 37(3), 1052, 2009
  20. Johnson N, Ogden J, Detailed spatial modeling of carbon capture and storage (CCS) infrastructure deployment in the southwestern United States, Amsterdam, 2011
  21. Kuby MJ, Bielicki JM, Middleton RS, International Regional Science Review., 34(3), 285, 2011
  22. Morbee J, Serpa J, Tzimas E, Optimal planning of CO2 transmission infrastructure: The JRC InfraCCS tool, Amsterdam, 2011
  23. Kuby MJ, Middleton RS, Bielicki JM from networking pipelines in CCS infrastructure systems, Amsterdam, Analysis of cost savings, 2011
  24. Chen WT, Li YP, Huang GH, Chen X, Li YF, Appl. Energy, 87(3), 1033, 2010
  25. Zhou WJ, Zhu B, Fuss S, Szolgayova J, Obersteiner M, Fei WY, Appl. Energy, 87(7), 2392, 2010
  26. Brunsvold A, Jakobsen JP, Husebye J, Kalinin A, Case studies on CO2 transport infrastructure: Optimization of pipeline network, effect of ownership, and political incentives, Amsterdam, 2011
  27. Han JH, Lee IB, Appl. Energy, 88(12), 5056, 2011
  28. Han JH, Lee IB, Ind. Eng. Chem. Res., 50(23), 13435, 2011
  29. Han JH, Ryu JH, Lee IB, Ind. Eng. Chem. Res., 51(8), 3368, 2012
  30. Han JH, Lee JU, Lee IB, Ind. Eng. Chem. Res., 51(7), 2983, 2012
  31. Han JH, Ahn YC, Lee IB, Appl. Energy., 95, 186, 2012
  32. Ilyas M, Lim Y, Han C, Korean J. Chem. Eng., 10.1007/s11814-011-0302-3, 2012
  33. Park K, Shin D, Lee G, Yoon E, Korean J. Chem. Eng., DOI:10.1007/s11814-011-0295-y, 2012
  34. van den Broek M, Brederode E, Ramirez A, Kramers L, van der Kuip M, Wildenborg T, Turkenburg W, Faaij A, Environmental Modelling & Software., 25(12), 1754, 2010
  35. Sabio N, Gadalla M, Guillen-Gosalbez G, Jimenez L, Int. J.Hydrog. Energy., 35(13), 6836, 2010
  36. Fava JA, Denison R, Jones B, Curran MA, Vigon B, Selke S, Society of Environmental Toxicology and Chemistry (SETAC)., 1991
  37. Fava JA, A technical framework for life-cycle assessments 1991: Society of Environmental Toxicology and Chemistry.
  38. Consoli F, Workshop S, Guidelines for life-cycle assessment: a code of practice 1993: Society of Environmental Toxicology and Chemistry (SETAC) Pensacola, FL.
  39. Azapagic A, Chem. Eng. J., 73(1), 1, 1999
  40. Heijungs R, Sun S, The International Journal of Life Cycle Assessment., 7(5), 314, 2002
  41. Spriensma MGAR, The Eco-indicator 99 A damage oriented method for Life Cycle Impact Assessment., 2000
  42. Guillen-Gosalbez G, Caballero JA, Jimenez L, Ind. Eng. Chem. Res., 47(3), 777, 2008
  43. Guillen-Gosalbez G, Mele FD, Grossmann IE, AIChE J., 56(3), 650, 2010
  44. Hugo A, Pistikopoulos EN, J. Cleaner Production., 13(15), 1471, 2005
  45. Summerfield IR, Goldthorpe SH, Sheikh KA, Williams N, Ball P, Energy Convers. Manage., 36(6-9), 849, 1995
  46. Waku H, Tamura I, Inoue M, Akai M, Energy Convers. Manage., 36(6-9), 877, 1995
  47. Mann MK, Spath PL, Craig KR, Economic and life cycle assessment of an integrated biomass gasification combined cycle system, 1996
  48. Rao AB, Rubin ES, Environ. Sci. Technol., 36(20), 4467, 2002
  49. Lombardi L, Energy Conv. Manag., 44(1), 93, 2003
  50. Benetto E, Popovici EC, Rousseaux P, Blondin J, Energy Conv. Manag., 45(18-19), 3053, 2004
  51. Spath PL, Mann MK, Biomass Power and Conventional Fossil Systems with and without CO2 Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions and Economics, 2004
  52. Carpentieri M, Corti A, Lombardi L, Energy Conv. Manag., 46(11-12), 1790, 2005
  53. Khoo HH, Tan RBH, Energy Fuels, 20(5), 1914, 2006
  54. Khoo HH, Tan RBH, Environ. Sci. Technol., 40(12), 4016, 2006
  55. Odeh NA, Life Cycle Emissions from Fossil Fuel Power Plants with Carbon Capture and Storagestorage, 2007
  56. Viebahn P, Nitsch J, Fischedick M, Esken A, Schuwer D, Supersberger N, Zuberbuhler U, Edenhofer O, Int. J. Greenhouse Gas Control., 1(1), 121, 2007
  57. Hertwich EG, Aaberg M, Singh B, Stromman AH, Chin. J. Chem. Eng., 16(3), 343, 2008
  58. Koornneef J, van Keulen T, Faaij A, Turkenburg W, Int. J.Greenhouse Gas Control., 2(4), 448, 2008
  59. Odeh NA, Cockerill TT, Energy Policy, 36(1), 367, 2008
  60. Pehnt M, Henkel J, Int. J. Greenhouse Gas Control., 3(1), 49, 2009
  61. Korre A, Nie Z, Durucan S, Int. J. Greenhouse Gas Control., 4(2), 289, 2010
  62. Singh B, Strømman AH, Hertwich EG, Int. J. Greenhouse Gas Control., 5(4), 911, 2010
  63. Khoo HH, Bu J, Wong RL, Kuan SY, Sharratt PN, Energy Procedia., 4, 2494, 2011
  64. Akai M, Nomura N, Waku H, Inoue M, Energy, 22(2-3), 249, 1997
  65. Wildbolz C, Life cycle assessment of selected technologies for CO2 transport and sequestration, 2007
  66. Aycaguer AC, Lev-On M, Winer AM, AAPG Bull., 15(2), 303, 2001
  67. Suebsiri J, Wilson M, Tontiwachwuthikul P, Ind. Eng. Chem. Res., 45(8), 2483, 2005
  68. Joint Committee of the Royal Society of Canada and the Canadian Academy of Engineering on Health and Safety, in Health and Safety Policies: Guiding Principles for Risk Management, 2007
  69. Froot KA, Scharfstein DS, Stein JC, J. Finance., 48(5), 1629, 1993
  70. Carpenter M, Kvien K, Aarnes J, Int. J. Greenhouse Gas Control., 5(4), 942, 2011
  71. Koornneef J, Ramirez A, Turkenburg W, Faaij A, The environmental impact and risk assessment of CO2 capture, transport and storage - An evaluation of the knowledge base, Progress in Energy and Combustion Science.
  72. Tzimas E, Mercier A, Cormos CC, Peteves SD, Energy Policy, 35(8), 3991, 2007
  73. Strazisar BR, Anderson RR, White CM, Energy Fuels, 17(4), 1034, 2003
  74. Britter RE, Annual Review of Fluid Mechanics., 21, 317, 1989
  75. Aines RD, Leach MJ, Weisgraber TH, Simpson MD, Friedmann SJ, Bruton CJ, Quantifying the potential exposure hazard due to energetic releases of CO2 from a failed sequestration well, Washington DC, 2009
  76. Damen K, Faaij A, Turkenburg W, Climatic Change., 74(1-3), 289, 2006
  77. Karl M, Wright RF, Berglen TF, Denby B, Int. J. Greenhouse Gas Control., 5(3), 439, 2011
  78. Khan FI, Abbasi SA, J. Loss Prev. Process Ind., 12(5), 361, 1999
  79. Beamon AJ, Leckey TJ, Trends in power plant operating costs, Issues in Midterm Analysis and Forecasting 1999 - Trends in Power Plant Operating Costs. EIA/DOE-0607(99), 1999
  80. Singh V, Fehrs J, The work that goes into renewable energy, The Work That Goes into Renewable Energy, 2001
  81. Golomb D, Energy Conv. Manag., Supplement(0), 38, S279, 1997
  82. Koornneef J, Spruijt M, Molag M, Ramirez A, Turkenburg W, Faaij A, J. Hazard. Mater., 177(1-3), 12, 2010
  83. Gale J, Davison J, Energy, 29(9-10), 1319, 2004
  84. Burgherr P, Hirschberg S, Energy, 33(4), 538, 2008
  85. Ranheim E, The responsibilities of the ship owner and what he can do to improve safety, “securite Maritime et Protection de l’Environnement" Evolution et Perspectives Conference, 68, 2002
  86. Skjong R, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2, 319, 2005
  87. Saripalli KP, Mahasenan NM, Cook EM, Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, 1, 511, 2003
  88. Vendrig M, The use of SWIFT and QRA in determining risk of leakage from CO2 capture, transport and storage systems, Report Number PH4/31, 230, 2004
  89. Benson SM, Hepple R, Apps J, Tsang CF, Lippmann M, Lessons learned from natural and industrial analogues for storage of carbon dioxide in deep geological formations, Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations, 2002
  90. Jordan PD, Benson SM, Environmental Geology., 57(5), 1103, 2009
  91. Viebahn P, Esken A, Fischedick M, Energy Procedia., 1(1), 4023, 2009
  92. Middleton RS, Kuby MJ, Bielicki JM, Generating candidate networks for optimization: The CO2 capture and storage optimization problem, Computers, Environment and Urban Systems.
  93. Ha-Duong M, Loisel R, Int. J. Greenhouse Gas Control., 5(5), 1346, 2011