Issue
Korean Journal of Chemical Engineering,
Vol.29, No.10, 1438-1443, 2012
Computational study on the decomposition of tetraneopentyl zirconium for the chemical vapor deposition of zirconium carbide
The overall gas phase decomposition mechanism of tetraenopentyl zirconium precursor (Zr[CH2C(CH3)3]4) for the chemical vapor deposition of zirconium carbide thin films was investigated by using computational thermochemistry. Density functional theory (DFT) and harmonic vibrational frequency calculation were used to generate thermodynamic properties at each reaction step, based on which thermodynamic or kinetic preference of a reaction pathway was evaluated. While the preference of γ-hydrogen abstraction of neopentane over α-hydrogen abstraction was confirmed in the initial stage of ZrNp4 decomposition, they turned out to be competing instead of the dominant preference of γ-hydrogen abstraction. Methane formation at three subsequent reaction steps was explained by β-methyl migration, and the following α-hydrogen abstraction of methane based on the suggestion that α- and γ-hydrogen abstractions of neopentane are competing kinetically in previous reaction steps. Computational thermochemistry showed a possibility as a general tool to anticipate the gas phase decomposition mechanism of a precursor in chemical vapor deposition.
[References]
  1. Kieffer R, Proc. Intern. Symp. Reactive Solids., 1001, 1952
  2. Technical Publications, CERAO Incorporate, 7(2), 1997
  3. Aizawa T, T. Rep. National Inst. Res. Inorg. Mater., 81, 27, 1994
  4. Mackie WA, Hartman RL, Anderson MA, Davis PR, J. Vac. Sci. Technol. B, 12(2), 722, 1994
  5. Mackie WA, Xie TB, Matthews MR, Routh BP, Davis PR, J. Vac. Sci. Technol. B, 16(4), 2057, 1998
  6. Mackie WA, Xie TB, Davis PR, J. Vac. Sci. Technol. B, 17(2), 613, 1999
  7. Kang DH, Zhirnov VV, Wojak GJ, Sanwald RC, Park M, Hren JJ, Cuomo JJ, Mat. Res. Soc. Symp. Proc., 558, 563, 2000
  8. Spindt C, Holland CE, Schwoebel PR, SPIE Proc., 3955, 151, 2000
  9. Yater JE, Shih A, Katzer DS, Mat. Res. Soc. Symp. Proc., 558, 551, 2000
  10. Smith DC, Rubiano RR, Healy MD, Springer RW, Mat.Res. Soc. Symp. Proc., 282, 642, 1993
  11. Parmeter JE, Smith DC, Healy MD, J. Vac. Sci. Technol. A, 12(4), 2107, 1994
  12. Girolami GS, Jensen JA, Gozum JE, Pollina DM, Mat.Res. Soc. Symp. Proc., 121, 429, 1998
  13. Healy MD, Smith DC, Rubiano RR, Springer RW, Parmeter JE, Mat. Res. Soc. Symp. Proc., 327, 127, 1994
  14. Won YS, Kim YS, Varanasi VG, Kryliouk O, Anderson TJ, Sirimanne CT, McElwee-White L, J. Cryst. Growth, 304(2), 324, 2007
  15. Won YS, Varanasi VG, Kryliouk O, Anderson TJ, McElwee-White L, Perez RJ, J. Cryst. Growth, 307(2), 302, 2007
  16. Wu YD, Peng ZH, Chan KWK, Xiaozhan L, Tuinman AA, Xue Z, Organometallics., 18, 2081, 1999
  17. Wu YD, Peng ZH, Xue ZL, J. Am. Chem. Soc., 118(40), 9772, 1996
  18. Cheon J, Dubois LH, Girolami GS, J. Am. Chem. Soc., 119(29), 6814, 1997
  19. Gaussian 03, Revision B.04, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Eds, Gaussian, Inc., Wallingford CT, 2004
  20. Becke AD, J. Chem. Phys., 98, 1372, 1993
  21. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ, J. Phys. Chem., 98(45), 11623, 1994
  22. Hajela S, Bercaw JE, Organometallics., 13, 1147, 1994
  23. Horton AD, Organometallics., 15, 2675, 1996
  24. Lin M, Spivak GJ, Baird MC, Organometallics., 21, 2350, 2002
  25. Chirik PJ, Dalleska NF, Henling LM, Bercaw JE, Organometallics., 24, 2789, 2005
  26. Beswick CL, Marks TJ, J. Am. Chem. Soc., 122(42), 10358, 2000