Issue
Korean Journal of Chemical Engineering,
Vol.29, No.10, 1403-1408, 2012
Complete conversion of cellulose to water soluble substances by pretreatment with ionic liquids
Pretreatment of cellulose to water soluble substances (WSS) can enhance its efficient conversion in water solvent, such as ethanol fermentation. In this work, we found ionic liquid (IL), 1-methyl-3-methylimidazolium dimethylphosphate ([Mmim][DMP]), could convert efficiently cellulose to obtain WSS, and the product WSS and IL mixture could be separated by ethanol anti-solvent way. Effects of ILs, time, temperature and water on cellulose conversion were investigated. NMR, FTIR, XRD and SEM were employed to study the mechanism of cellulose conversion with ILs. The results indicate that [Mmim][DMP] has a greater ability to interact with cellulose than [Bmim][Cl] under the same conditions. Cellulose can be completely converted into WSS in [Mmim][DMP] under all the investigated temperatures from 140 to 160 ℃. Increasing temperature is beneficial to the conversion rate of cellulose. But the presence of water can decrease the conversion rate of cellulose. During the treatment by [Mmim][DMP], the hydroxyls of cellulose can form hydrogen bonds with both anion and cation of [Mmim][DMP], and after the treatment the inter- and intramolecular hydrogen bonds of cellulose and the compact structure of cellulose are collapsed.
[References]
  1. Luo C, Wang S, Liu HC, Angew. Chem. Int. Ed., 46, 7636, 2007
  2. Pinkert A, Marsh KN, Pang SS, Staiger MP, Chem. Rev., 109(12), 6712, 2009
  3. Climent MJ, Corma A, Iborra S, Green Chem., 13, 520, 2011
  4. Ji N, Zhang T, Zheng MY, Wang AQ, Wang H, Wang XD, Chen JG, Angew. Chem. Int. Ed., 47, 8510, 2008
  5. Mascal M, Nikitin EB, Angew. Chem. Int. Ed., 47, 7924, 2008
  6. Onda A, Ochi T, Yanagisawa K, Green Chem., 10, 1033, 2008
  7. Binder JB, Raines RT, J. Am. Chem. Soc., 131, 1979, 2008
  8. Zhu YH, Kong ZN, Stubbs LP, Lin H, Shen SC, Anslyn EV, Maguir JA, ChemSusChem., 3, 67, 2010
  9. Yu Y, Wu HW, Ind. Eng. Chem. Res., 49(8), 3902, 2010
  10. Nguyen TAD, Kim KR, Han SJ, Cho HY, Kim JW, Park SM, Park JC, Sim SJ, Bioresour. Technol., 101(19), 7432, 2010
  11. Zhu JY, Pan XJ, Bioresour. Technol., 101(13), 4992, 2010
  12. Kumar P, Barrett DM, Delwiche MJ, Stroeve P, Ind. Eng. Chem. Res., 48(8), 3713, 2009
  13. Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1, 2002
  14. Ha SH, Ngoc LM, An GM, Koo YM, Bioresour. Technol., 102(2), 1214, 2011
  15. Zhou J, Wang YH, Chu J, Luo LZ, Zhuang YP, Zhang SL, Bioresour. Technol., 100(2), 819, 2009
  16. Lee JW, Houtman CJ, Kim HY, Choi IG, Jeffries TW, Bioresour. Technol., 102(16), 7451, 2011
  17. Saha BC, Itena LB, Cotta MA, Wu YV, Process Biochem., 40, 3693, 2005
  18. Guo GL, Chen WH, Chen WH, Men LC, Hwang WS, Bioresour. Technol., 99(14), 6046, 2008
  19. Sun FB, Chen HZ, Bioresour. Technol., 99(14), 6156, 2008
  20. Swatloski RP, Spear SK, Holbrey JD, Rogers RD, AAPG Bull., 124, 4974, 2002
  21. Zhang YT, Du HB, Qian XH, Chen EYX, Energy Fuels., 24, 2410, 2010
  22. Xie H, King A, Kilpelainen I, Granstrom M, Argyropoulos DS, Biomacromolecules, 8(12), 3740, 2007
  23. Rinaldi R, Palkovits R, Schuth F, Angew. Chem. Int. Ed., 47, 8047, 2008
  24. Vitz J, Erdmenger T, Haensch C, Schubert US, Green Chem., 11, 417, 2009
  25. Dadi AP, Varanasi S, Schall CA, Biotechnol. Bioeng., 95(5), 904, 2006
  26. Zhao HB, Holladay JE, Brown H, Zhang Z, Science., 316, 1597, 2007
  27. Li CZ, Wang Q, Zhao ZBK, Green Chem., 10, 177, 2007
  28. Ren SH, Hou YC, Wu WZ, Liu WN, J. Chem. Eng. Data, 55(11), 5074, 2010
  29. Liu WN, Hou YC, Wu WZ, Ren SH, Jing Y, Zhang BG, Ind. Eng. Chem. Res., 50(11), 6952, 2011
  30. Zhang JM, Zhang H, Wu J, Zhang J, He JS, Xiang JF, Phys. Chem. Chem. Phys., 12, 1941, 2010
  31. Rosatella AA, Brancob LC, Afonso CAM, Green Chem., 11, 1406, 2009
  32. Yang F, Li LZ, Li Q, Tan WQ, Liu W, Xian M, Carbohydr.Polymers., 81, 311, 2010