Issue
Korean Journal of Chemical Engineering,
Vol.29, No.9, 1178-1186, 2012
Electrochemical degradation of phenol on the La and Ru doped Ti/SnO2-Sb electrodes
La and Ru doped Ti/SnO2-Sb electrodes were prepared by thermal decomposition and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It confirmed that the surface of the La and Ru doped Ti/SnO2-Sb electrodes presents a certain microspherical structure formed by aggregates of nanoparticles, which increases the specific area greatly and provides more active sites. The enhanced performance of the La and Ru doped electrodes arose from the increased adsorption capacity of hydroxyl radicals. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed an improvement of the electrochemical capacity for the La and Ru doped Ti/SnO2-Sb electrodes. The electrochemical oxidation performance of the prepared electrode was further studied using phenol as a model pollutant. UV scans revealed that both phenol and its intermediate products are more rapidly decomposed, especially in the early stage of oxidation on the La and Ru doped electrodes. The removals of chemical oxygen demand (COD) were 86.4% and 82.1% on the Ti/SnO2-Sb-La and Ti/SnO2-Sb-Ru electrodes, respectively, which were higher than that on the SnO2-Sb/Ti electrode (60.1%). The doped electrodes are demonstrated to have superior electrochemical oxidation ability for phenol.
[References]
  1. Maluleke MA, Linkov VM, Sep. Purif. Technol., 32(1-3), 377, 2003
  2. Levi R, Milman M, Landau MV, Brenner A, Herskowitz M, Environ. Sci. Technol., 42, 5165, 2008
  3. Hammami S, Oturan N, Bellakhal N, Dachraoui M, Oturan MA, J. Electroanal. Chem., 610(1), 75, 2007
  4. An TC, Zhu XH, Xiong Y, Chemosphere., 46, 897, 2002
  5. Lee Y, Kim Y, Jeong H, Yeo MK, Kang M, Bull. Korean Chem. Soc., 30, 107, 2009
  6. Lam SM, Sin JC, Mohamed AR, Korean J. Chem. Eng., 27(4), 1109, 2010
  7. Park JH, Seo YS, Kim HS, Kim IK, Korean J. Chem. Eng., 28(8), 1693, 2011
  8. Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayan S, Water Res., 39, 1601, 2005
  9. Panizza M, Delucchi M, Cerisola G, J. Appl. Electrochem., 35(4), 357, 2005
  10. Canizares P, Dominguez JA, Rodrigo MA, Villasenor J, Rodriguez J, Ind. Eng. Chem. Res., 38(10), 3779, 1999
  11. Xiong Y, He C, Karlsson HT, Zhu XH, Chemosphere., 50, 131, 2003
  12. Simond O, Comninellis C, Electrochim. Acta, 42(13-14), 2013, 1997
  13. Ma HC, Liu CP, Liao JH, Su Y, Xue XZ, Xing W, J. Mol. Catal. A-Chem., 247(1-2), 7, 2006
  14. Vukovic M, Marijan D, Cukman D, Pervan P, Milun M, J. Mater. Sci., 34(4), 869, 1999
  15. Comninellis C, Vercesi GP, J. Appl. Electrochem., 21, 335, 1991
  16. Duverneuil P, Maury F, Pebere N, Senocq F, Vergnes H, Surf.Coat. Technol., 151-152, 9, 2002
  17. Zanta CLPS, Michaud PA, Comninellis C, De Andrade AR, Boodts JFC, J. Appl. Electrochem., 33(12), 1211, 2003
  18. Costa CR, Botta CMR, Espindola ELG, Olivi P, J. Hazard. Mater., 153(1-2), 616, 2008
  19. Hadjarab B, Bouguelia A, Benchettara A, Trari M, J. Alloy.Compd., 461, 360, 2008
  20. Lipp L, Pletcher D, Electrochim. Acta, 42(7), 1091, 1997
  21. Correalozano B, Comninellis C, Debattisti A, J. Appl. Electrochem., 26(7), 683, 1996
  22. Houk LL, Johnson SK, Feng J, Houk RS, Johnson DC, J. Appl. Electrochem., 28, 1167n, 1998
  23. Wang YH, Chan KY, Li XY, So SK, Chemosphere., 65, 1087, 2006
  24. Johnson SK, Houk LL, Feng JR, Houk RS, Johnson DC, Environ. Sci. Technol., 33, 2638, 1999
  25. Makgae ME, Theron CC, Przybylowicz WJ, Crouch AM, Mater. Chem. Phys., 92(2-3), 559, 2005
  26. Feng YJ, Cui YH, Bruce L, Liu ZQ, Chemosphere., 70, 1629, 2008
  27. Ardizzone S, Bianchi CL, Cappelletti G, Ionita M, Minguzzi A, Rondinini S, Vertova A, J. Electroanal. Chem., 589(1), 160, 2006
  28. Matyasovszky N, Tian M, Chen AC, J. Phys. Chem. A, 113(33), 9348, 2009
  29. Makgae ME, Klink MJ, Crouch AM, Appl. Catal. B: Environ., 84(3-4), 659, 2008
  30. Montilla F, Morallon E, De Battisti A, Barison S, Daolio S, Vazquez JL, J. Phys. Chem. B, 108(41), 15976, 2004
  31. Weibel A, Bouchet R, Boulc’h F, Knauth P, Chem. Mater., 17, 2378, 2005
  32. Brito GES, Pulcinelli SH, Santilli CV, J. Mater. Sci., 31(15), 4087, 1996
  33. Correalozano B, Comninellis C, Debattisti A, J. Electrochem. Soc., 143(1), 203, 1996
  34. Trost BM, Chan C, Ruhter G, J. Am. Chem. Soc., 109, 3486, 1987
  35. Srinivas K, Vithal M, Sreedhar B, Raja MM, Reddy PV, J.Phys. Chem. C., 113, 3543, 2009
  36. Yang SX, Feng YJ, Wan JF, Zhu WP, Jiang ZP, Appl. Surf. Sci., 246(1-3), 222, 2005
  37. Fierro S, Nagel T, Baltruschat H, Comninellis C, Electrochem.Commun., 9, 1969, 2007
  38. Mousty C, Foti G, Comninellis C, Reid V, Electrochim. Acta, 45(3), 451, 1999
  39. Li J, Cassell A, Delzeit L, Han J, Meyyappan M, AAPG Bull., 106, 9299, 2002
  40. Zanta CLPS, de Andrade AR, Boodts JFC, J. Appl. Electrochem., 30(4), 467, 2000
  41. Cestarolli DT, De Andrade AR, Electrochim. Acta, 48(28), 4137, 2003
  42. Yi QF, Huang W, Zhang JJ, Liu XP, Li L, J. Electroanal. Chem., 610(2), 163, 2007
  43. Rasten E, Hagen G, Tunold R, Electrochim. Acta, 48(25-26), 3945, 2003
  44. Karunakaran C, Gomathisankar P, Manikandan G, Korean J. Chem. Eng., 28(5), 1214, 2011
  45. Ye ZG, Meng HM, Chen D, Yu HY, Huan ZS, Wang XD, Sun DB, Solid State Sci., 10, 346, 2008
  46. Zhu XP, Shi SY, Wei JJ, Lv FX, Zhao HZ, Kong JT, He Q, Ni JN, Environ. Sci. Technol., 41, 6541, 2007
  47. Chailapakul O, Popa E, Tai H, Tai BV, Tryk DK, Electrochem. Commun., 2, 422, 2000
  48. Jung HJ, Hong JS, Suh JK, Korean J. Chem. Eng., 28(9), 1882, 2011
  49. Fierro S, Nagel T, Baltruschat H, Comninellis C, Electrochem.Commun., 9, 1969, 2007