Issue
Korean Journal of Chemical Engineering,
Vol.29, No.9, 1115-1118, 2012
A study of the palladium size effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen using highly uniform palladium nanoparticles supported on carbon
Highly monodisperse carbon-supported palladium nanoparticles with controllable size (3 nm, 6.5 nm, 9.5 nm) were prepared using a simple colloidal method, and the size dependence of the catalytic performance for the direct synthesis of hydrogen peroxide from hydrogen and oxygen was studied. Smaller-sized supported palladium nanoparticles showed both higher conversion of hydrogen and selectivity for hydrogen peroxide, compared to larger-sized supported particles. Among the catalysts tested, 3-nm Pd nanoparticles supported on carbon showed the highest yield for hydrogen peroxide because of the small size and high crystallinity.
[References]
  1. Campos-Martin JM, Blanco-Brieva G, Fierro JLG, Angew.Chem. Int. Ed., 45, 6962, 2006
  2. Hage R, Lienke A, Angew. Chem. Int. Ed., 45, 206, 2006
  3. Centi G, Perathoner S, Abate S, in Modern heterogeneous oxidation catalysis: design, rections and characterization, Mizuno N Eds., Wiley-Verlag GmbH & Co. KGaA, 2009
  4. Kosaka K, Yamada H, Shishida K, Echigo S, Minear RA, Tsuno H, Matsui S, Water Res., 35, 3587, 2001
  5. Riedl HJ, Pfleiderer G, US Patent, 2,158,525, 1939
  6. Edwards JK, Hutchings GJ, Angew. Chem. Int. Ed., 47, 9192, 2008
  7. Park S, Kim TJ, Chung YM, Oh SH, Song IK, Korean J. Chem. Eng., 28(6), 1359, 2011
  8. Edwards JK, Solsona B, Science., 323, 1037, 2009
  9. Abate S, Melada S, Centi G, Perathoner S, Pinna F, Strukul G, Catal. Today, 117(1-3), 193, 2006
  10. Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ, J. Catal., 236(1), 69, 2005
  11. Zhou Z, Wu Z, Zhang C, Zhou B, US Patent, 7,601,668, 2009
  12. Zhou B, Lee LK, US Patent, 6,168,775, 2001
  13. Somorjai GA, Frei H, Park JY, J. Am. Chem. Soc., 131(46), 16589, 2009
  14. Van Santen RA, Acc. Chem. Res., 42, 57, 2008
  15. Bond GC, Chem. Soc. Rev., 20, 441, 1991
  16. Boudart M, Adv. Catal., 20, 153, 1969
  17. Melada S, Pinna F, Strukul G, Perathoner S, Centi G, J. Catal., 235(1), 241, 2005
  18. Park J, Joo J, Kwon S, Jang Y, Hyeon T, Angew. Chem. Int.Ed., 46, 4630, 2007
  19. Kim KS, Demberelnyamba ND, Yeon SW, Choi S, Cha JH, Lee H, Korean J. Chem. Eng., 22(5), 717, 2005
  20. Cha JH, Kim KS, Lee H, Korean J. Chem. Eng., 26(3), 760, 2009
  21. Liu Q, Baur J, Schaak RE, Lunsford J, Angew. Chem. Int.Ed., 47, 6221, 2008
  22. Kim SW, Park J, Jang Y, Chung Y, Hwang S, Hyeon T, Kim YW, Nano Lett., 3, 1289, 2003
  23. Yang Z, Klabunde KJ, J. Organomet. Chem., 694, 1016, 2009
  24. Park S, Lee SH, Song SH, Park DR, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK, Catal. Commun., 10, 391, 2009
  25. Melada S, Rioda R, Menegazzo F, Pinna F, Strukul G, J. Catal., 239(2), 422, 2006
  26. Abate S, Centi G, Melada S, Perathoner S, Pinna F, Strukul G, Catal. Today, 104(2-4), 323, 2005