Issue
Korean Journal of Chemical Engineering,
Vol.29, No.7, 925-930, 2012
Production of cellulases and β-glucosidase in Trichoderma reesei mutated by proton beam irradiation
To obtain mutant strains producing high levels of cellulases (FPase and CMCase) and β-glucosidase, Trichoderma reesei KCTC 6950 was mutated by proton beam irradiation. Five mutants were selected out of 1,000 mutants of T.reesei treated with proton beam irradiation, based on their ability for enzyme production on a plate screening medium. In submerged cultures containing Mandel’s fermentation medium, the mutant strain T-2 (MT-2) demonstrated a 165% increase in the activity of FPase, a 146% increase in the activity of CMCase, and a 313% increase in the activity of β-glucosidase, compared with the wild type strain. Additionally, the properties of high level β-glucosidase produced by MT-2 were the same as those of the wild type strain, e.g., an optimum pH of 4.8, and an optimum temperature of 65 ℃. Moreover, the protein concentrations of β-glucosidase produced by the wild type strain and MT-2 were measured by SDS-PAGE, and then β-glucosidase activities were detected by the MUG-zymogram assay.
[References]
  1. He J, Yu B, Zhang K, Ding X, Chen D, Indian J. Microbiol., 49, 188, 2009
  2. Bahia A, Ali G, Biochem. Eng. J., 32, 191, 2006
  3. Wu JC, Ng KR, Chong J, Yang KJ, Lam XP, Nam CT, Nugroho AJ, Korean J. Chem. Eng., 27(2), 469, 2010
  4. Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T, Biomol.Eng., 22, 89, 2005
  5. Gong CS, Ladisch MR, Taso GT, Biotechnol. Bioeng., 19, 959, 1977
  6. Peyman A, Noraini S, Aidil AH, Wan MY, Biotechnol. Bioprocess Eng., 16, 238, 2011
  7. Xu F, Wang J, Chen S, Qin W, Yu Z, Zhao H, Xing X, Li H, Appl. Biochem. Microbiol., 47, 53, 2011
  8. Zhang YHP, Himmel ME, Mielenz JR, Biotechnol. Adv., 24, 452, 2006
  9. Henrissat B, Driguez H, Viet C, Schulein M, Nat. Biotechnol., 3, 781, 1985
  10. Gritzali M, Brown RD, Adv. Chem. Ser., 191, 237, 1979
  11. Ike M, Park J, Tabuse M, Tokuyasu K, Appl. Microbiol. Biotechnol., 87(6), 2059, 2010
  12. Xiao ZZ, Zhang X, Gregg DJ, Saddler JN, AAPG Bull., 113, 1115, 2004
  13. Chirico WJ, Brown RD, European J. Biochem., 165, 333, 1987
  14. Saunders G, Allsop A, Holt G, J. Chem. Technol. Biotechnol., 32, 354, 1882
  15. Kwon HJ, Park YJ, Yoo YB, Park SY, Kong WS, J.Microbiol. Biotechnol., 17, 1041, 2007
  16. Kim SB, Kim JS, Lee JH, Kang SW, Park CH, Kim SW, Appl. Biochem. Biotechnol., DOI: 10.1007/s2010-011-9204-4, 2011
  17. Mandels M, Hontz I, Nystrom J, Biotechnol. Bioeng., 16, 1471, 1974
  18. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A, Curr. Microbiol., 57(5), 503, 2008
  19. Mandels M, Weber J, Adv. Cem. Ser., 95, 391, 1969
  20. Ghose TK, Appl. Chem., 59, 257, 1987
  21. Bradford MM, Anal. Biochem., 72, 248, 1976
  22. Laemmli UK, Nature., 227, 680, 1970
  23. Lacks SA, Springhorn SS, J. Biol. Chem., 10, 7467, 1980
  24. Amouri B, Gargouri A, J. Biochem. Eng., 32, 191, 2006
  25. Farshad D, Jacqueline D, Iraj M, Philippe T, Hamid ZE, New Biotechnol., DOI: 10.1016/ j.nbt.2011.02.002, 2011
  26. Solov’eva IV, Okunev ON, Vel’kov VV, Koshelev AV, Bubnova TV, Kondrat’eva EG, Skomarovskii AA, Sinitsyn AP, J. Microbiol.
  27. Zaldivar J, Nielsen J, Olsson L, Appl. Microbiol. Biotechnol., 56(1-2), 17, 2001
  28. He Q, Li N, Chen X, Ye Q, Bai J, Xiong J, Ying H, Korean J. Chem. Eng., 28, 544, 2011
  29. Allen AL, Roche CD, Biotechnol. Bioeng., 33, 650, 1989
  30. Gadgil NJ, Daginawala HF, Chakrabarti T, Khanna P, Enzyme Microb. Technol., 17(10), 942, 1995