Issue
Korean Journal of Chemical Engineering,
Vol.29, No.4, 507-512, 2012
Multifunctional wool fiber treated with ε-polylysine
A creative method for fabricating environmentally-benign multifunctional wool fibers was established and reported. Through coating the wool fibers with ε-polylysine, the surface morphology and biochemical properties of the fibers were altered, enhancing their antimicrobial, hygroscopic and finished properties. The process of ε-polylysine coating was dependent on the solution environment, which influenced the electrostatic interactions between ε-polylysine molecules and wool fibers. The results showed that a maximum ε-polylysine coating (23.60 mg/g) on the surface of wool fibers was reached when wool fibers were soaked at 50 ℃ for 2 h in the solution with 10% on weight of fabric (owf) ε-polylysine and pH 8.0. The coated wool fiber showed promising antimicrobial rates of 96.98% and 97.93% against Escherichia coli and Micrococcus luteus, respectively. The wool fiber coated with the ε-polylysine was more hydrophilic than the uncoated wool fabrics. The functional wool fibers after water scrubbing for two times still have good antibacterial efficiency against Escherichia coli and Micrococcus luteus, and antimicrobial rates were 96.77% and 97.33%, respectively. This study shows that wool fibers modified by the nontoxic ε-polylysine have a great potential to be used in constructing multifunctional textiles.
[References]
  1. Moafi HF, Shojaie AF, Zanjanchi MA, Appl. Surf. Sci., 256(13), 4310, 2010
  2. Jus S, Schroeder M, Guebitz GM, Heine E, Kokol V, Enzyme Microb. Technol., 40(7), 1705, 2007
  3. Xu BS, Niu M, Wei LQ, Hou WS, Liu XG, J. Photochem. Photobiol., A., 188(1), 98, 2007
  4. Silva CJSM, Prabaharan M, Gubitz G, Cavaco-Paulo A, Enzyme Microb. Technol., 36(7), 917, 2005
  5. Han SY, Yang YQ, Dyes Pigm., 64(2), 157, 2005
  6. Freddi G, Arai T, Colonna GM, Boschi A, Tsukada M, J. Appl. Polym. Sci., 82(14), 3513, 2001
  7. Ki HY, Kim JH, Kwon SC, Jeong SH, J. Membr. Sci., 42(19), 8020, 2007
  8. Yuranova T, Rinon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J, J. Photochem. Photobiol., A., 16(1), 27, 2003
  9. Kim BJ, Park SJ, J. Colloid Interface Sci., 325(1), 297, 2008
  10. Gao Y, Cranston R, Textile Res. J., 78, 60, 2008
  11. Ki HY, Kim JH, Kwon SC, Jeong SH, J. Mater. Sci., 42(19), 8020, 2007
  12. Wang SH, Hou WS, Jia HJ, Surf. Coat. Technol., (Chinese)., 202, 460, 2007
  13. Chen D, Tan LF, Liu HY, Hu JY, Li Y, Tang FQ, Langmuir, 26(7), 4675, 2010
  14. Wang X, Cao GY, Xu WL, J. Appl. Polym. Sci., 112(4), 1959, 2009
  15. Chen CHY, Chiang CL, Mater. Lett., 62, 3607, 2008
  16. Yoshida T, Nagasawa T, Appl. Microbiol. Biotechnol., 62(1), 21, 2003
  17. Shih IL, Shen MH, Van YT, Bioresour. Technol., 97(9), 1148, 2006
  18. Jun H, Takafumi I, Ninomiya S, Seki H, Uohama K, Kimura S, Yanagimoto Y, Barnett JW, Regul. Toxicol. Pharm., 37, 328, 1995
  19. Shima S, Matsuoka H, Iwamoto T, Sakai H, J. Antibiot., 37, 1449, 1984
  20. Sakamoto H, Kumazama Y, Toiguchi S, Katsuya S, Takahko S, Masao M, J. Food Sci., 60(2), 300, 2006
  21. Wang Q, Jin GB, Fan XR, Zhao XF, Cui L, Wang P, Appl. Biochem. Biotechnol., 160(8), 2486, 2010
  22. Feng XH, Xu H, Xu XY, Yao J, Yao Z, Process Biochem., 43, 667, 2008
  23. Wang Q, Fan XR, Huc YJ, Bioprocess Biosyst. Eng., 32, 633, 2009
  24. He MZ, Yan J, Gong Y, Shanghai Text Sci. Technol., 33, 62, 2005
  25. Xie KL, Hou AQ, J. Dispersion Sci. Technol., 29, 436, 2008
  26. Xu WL, Cui WG, Li WB, Guo WQ, Powder Technol., 140(1-2), 136, 2004
  27. Xu WL, Ke GZ, Wu JH, Wang XG, Eur. Polym. J., 42, 2168, 2006
  28. Jia S, Fan BQ, Dai YJ, Wang GL, Peng P, Jia YY, Food Sci. Biotechnol., 19(2), 361, 2010
  29. Huson M, Evans D, Church J, Hutchinson S, Maxwell J, Corino G, J. Struct. Biol., 163(2), 127, 2008
  30. Feng XJ, Jiang L, Adv. Mater., 18(23), 3063, 2006