Issue
Korean Journal of Chemical Engineering,
Vol.29, No.10, 1298-1309, 2012
A hybrid optimization strategy for simultaneous synthesis of heat exchanger network
The heat exchanger network synthesis problem often leads to large-scale non-convex mixed integer nonlinear programming formulations that contain many discrete and continuous variables, as well as nonlinear objective function or nonlinear constraints. In this paper, a novel method consisting of genetic algorithm and particle swarm optimization algorithm is proposed for simultaneous synthesis problem of heat exchanger networks. The simultaneous synthesis problem is solved in the following two levels: in the upper level, the network structures are generated randomly and reproduced using genetic algorithm; and in the lower level, heat load of units and stream-split heat flows are optimized through particle swarm optimization algorithm. The proposed approach is tested on four benchmark problems, and the obtained solutions are compared with those published in previous literature. The results of this study prove that the presented method is effective in obtaining the approximate optimal network with minimum total annual cost as performance index.
[References]
  1. Furman KC, Sahinidis NV, Ind. Eng. Chem. Res., 41(10), 2335, 2002
  2. Furman KC, Sahinidis NV, Comput. Chem. Eng., 25(9-10), 1371, 2001
  3. Choi SH, Manousiouthakis V, Korean J. Chem. Eng., 19(2), 227, 2002
  4. Grossmann IE, Sargent RWH, Ind. Eng. Chem. Process Des.Dev., 18(2), 343, 1979
  5. Viswanathan J, Grossmann IE, Comput. Chem. Eng., 14(7), 769, 1990
  6. Durn MA, Grossmann IE, Mathematical Programming., 36(3), 307, 1986
  7. Ryoo HS, Sahinidis NV, Comput. Chem. Eng., 19(5), 551, 1995
  8. Westerlund T, Pettersson F, Comput. Chem. Eng., 19(S), 131, 1995
  9. Yee TF, Grossmann IE, Comput. Chem. Eng., 14(10), 1165, 1990
  10. Zamora JM, Grossmann IE, Comput. Chem. Eng., 22(3), 367, 1998
  11. Bjork KM, Westerlund T, Comput. Chem. Eng., 26(11), 1581, 2002
  12. Cardoso MF, Salcedo RL, de Azevedo SF, Barbosa D, Comput. Chem. Eng., 21(12), 1349, 1997
  13. Choi SH, Ko JW, Manousiouthakis V, Comput. Chem. Eng., 123, 1351, 1999
  14. Lewin DR, Wang H, Shalev O, Comput. Chem. Eng., 22(10), 1503, 1998
  15. Lewin DR, Comput. Chem. Eng., 22(10), 1387, 1998
  16. Ravagnani MASS, Silva AP, Arroyo PA, Constantino AA, Appl. Therm. Eng., 25(7), 1003, 2005
  17. Laukkanen T, Fogelholm CJ, Comput. Chem. Eng., 35(11), 2389, 2011
  18. Lotfi R, Boozarjomehry RB, Ind. Eng. Chem. Res., 49(10), 4731, 2010
  19. Yerramsetty KM, Murty CVS, Comput. Chem. Eng., 32(8), 1861, 2008
  20. Lin B, Miller DC, Comput. Chem. Eng., 28(8), 1451, 2004
  21. Chakraborty S, Ghosh P, Chem. Eng. J., 72(3), 209, 1999
  22. Pariyani A, Gupta A, Ghosh P, Comput. Chem. Eng., 30(6-7), 1046, 2006
  23. Gupta A, Ghosh P, Comput. Chem. Eng., 34, 1632, 2009
  24. Wu SJ, Chow PT, Comput Struct., 56(6), 979, 1995
  25. Luo X, Wen QY, Fieg G, Comput. Chem. Eng., 33(6), 1169, 2009
  26. Khorasany RM, Fesanghary M, Comput. Chem. Eng., 33(8), 1363, 2009
  27. Dong HG, Lin CY, Chang CT, Chem. Eng. Res. Des., 86(A3), 299, 2008
  28. Kennedy J, Eberhart R, Proceedings of IEEE International Conference on Neural Networks Neural Network, VI. IEEE, Service Center, Piscataway, NJ, USA, 1995
  29. Eberhart J, Shi Y, Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea, 2001
  30. Yee TF, Grossmann IE, Kravanja Z, Comput. Chem. Eng., 14(10), 1151, 1990
  31. Chen JJJ, Chem. Eng. Sci., 42(10), 2488, 1987
  32. Ratnaweera A, Halgamuge SK, Watson HC, IEEE. T. Evolut. Comput., 8(3), 240, 2004
  33. Shi Y, Eberhart R, Proceedings of IEEE international conference of evolutionary computation, Piscataway, New York, 1998
  34. Ahmad S, Ph.D. Thesis, UMIST, Manchester, UK, 1985
  35. Nielsen JS, Hansen MW, Joergensen S, Comput. Chem. Eng., (suppl.1), 20(S), 249, 1996
  36. Linnhoff B, Ahmad S, Comput. Chem. Eng., 14(7), 729, 1990
  37. Pettersson F, Comput. Chem. Eng., 29(5), 993, 2005
  38. Linnhoff B, Flower JR, AIChE J., 24(4), 642, 1978