Issue
Korean Journal of Chemical Engineering,
Vol.29, No.10, 1341-1346, 2012
Comparison of bioethanol production of simultaneous saccharification & fermentation and separation hydrolysis & fermentation from cellulose-rich barley straw
Cellulose rich barley straw, which has a glucan content of 62.5%, followed by dilute acid pretreatment, was converted to bioethanol by simultaneous saccharification and fermentation (SSF). The optimum fractionation conditions for barley straw were an acid concentration of 1% (w/v), a reaction temperature of 158 ℃ and a reaction time of 15 min. The maximum saccharification of glucan in the fractionated barley straw was 70.8% in 72 h at 60 FPU/gglucan, while the maximum digestibility of the untreated straw was only 18.9%. With 6% content WIS (water insoluble solid) for the fractionated barley straw, 70.5 and 83.2% of the saccharification yield were in SHF and SSF (representing with glucose equivalent), respectively, and a final ethanol concentration of 18.46 g/L was obtained under the optimized SSF conditions: 34 ℃ with 15 FPU/g-glucan enzyme loading and 1 g dry yeast cells/L. The results demonstrate that the SSF process is more effective than SHF for bioethanol production by around 18%.
[References]
  1. Balat M, Energy Conv. Manag., 52(2), 858, 2011
  2. Matsumura Y, Minowa T, Yamamoto H, Biomass Bioenerg., 29(5), 347, 2005
  3. FAOSTAT. Food and agriculture organization of the United Nations, http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567# ancor (Accessed Sep. 2011).
  4. Kim S, Dale BE, Biomass Bioenerg., 26(4), 361, 2004
  5. Chen Y, Sharma-Shivappa RR, Keshwani D, Chen C, Appl. Biochem. Biotechnol., 142(3), 276, 2007
  6. Brethauer S, Studer MH, Yang B, Wyman CE, Bioresour. Technol., 102(10), 6295, 2011
  7. Zeng MJ, Mosier NS, Huang CP, Sherman DM, Ladisch MR, Biotechnol. Bioeng., 97(2), 265, 2007
  8. Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119, 2011
  9. Li ZM, Liu Y, Liao W, Chen SL, Zemetra RS, Biomass Bioenerg., 35(1), 542, 2011
  10. Xiros C, Katapodis P, Christakopoulos P, Bioresour. Technol., 102(2), 1688, 2011
  11. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673, 2005
  12. Jeong TS, Um BH, Kim JS, Oh KK, Appl. Biochem. Biotechnol., 161(1-8), 22, 2010
  13. Olofsson K, Bertilsson M, Liden G, Biotechnol. Biofuels., 1, 1, 2008
  14. Lu X, Zhang Y, Liang Y, Yang J, Zhang S, Suzuki E, Korean J. Chem. Eng., 25(2), 302, 2008
  15. Wyman CE, Spindler DD, Grohmann K, Biomass Bioenergy., 3(5), 301, 1992
  16. Peng LC, Chen YC, Biomass Bioenerg., 35(4), 1600, 2011
  17. Soderstrom J, Galbe M, Zacchi G, J. Wood Chem. Technol., 25, 187, 2005
  18. Ohgren K, Galbe M, Zacchi G, Process Biochem., 42(5), 834, 2006
  19. Wingren A, Galbe M, Zacchi G, Biotechnol. Prog., 19(4), 1109, 2003
  20. Wingren A, Galbe M, Zacchi G, Bioresour. Technol., 99(7), 2121, 2008
  21. Ehrman T, Chemical Analysis & Testing Standard Procedure., No.002, 1992
  22. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tmpleton D, Crocker D, NREL/TP-510-42618, 2010
  23. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tmpleton D, NREL/TP-510-42623, 2008
  24. Sluiter A, Hyman D, Payne C, Wolfe J, NREL/TP-510-42627, 2008
  25. Selig M, Weiss N, Ji Y, NREL/TP-510-42629, 2008
  26. Dowe N, Mcmillan J, NREL/TP-510-42630, 2008
  27. Um BH, Bae SH, Korean J. Chem. Eng., 28(5), 1172, 2011
  28. Ooshima H, Ishitani Y, Harano Y, Biotechnol. Bioeng., 27, 389, 1985
  29. Philippidis GP, Smith TK, Appl. Biochem. Biotechnol., 51, 117, 1995
  30. Oh KK, Kim SW, Jeong YS, Hong SI, Appl. Biochem. Biotechnol., 89(1), 15, 2000
  31. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I, Process Biochem., 39, 1843, 2004