Issue
Korean Journal of Chemical Engineering,
Vol.29, No.8, 1019-1024, 2012
Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3-CeO2-ZrO2 catalysts prepared by a single-step sol-gel method: Effect of acidity and basicity of the catalysts
XGa2O3-CeO2-ZrO2 (X=0, 1, 3, 5, 7, and 9) catalysts were prepared by a single-step sol-gel method with a variation of Ga2O3 content (X, wt%) for use in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The ratio of cerium oxide:zirconium oxide in the XGa2O3-CeO2-ZrO2 catalysts was fixed to be Ce0.6Zr0.4O2. Effect of acidity and basicity of XGa2O3-CeO2-ZrO2 on the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide was investigated using NH3-TPD and CO2-TPD experiments, respectively. Experimental results revealed that both acidity and basicity of the catalysts played important roles in determining the catalytic performance in the reaction. The amount of dimethyl carbonate increased with increasing both acidity and basicity of the catalyst. Among the catalysts tested, 3Ga2O3-CeO2-ZrO2, which retained the largest acidity and basicity, exhibited the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.
[References]
  1. Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 317(1-2), 1, 2010
  2. Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241, 2001
  3. Babad H, Zeiler AG, Chem. Rev., 73, 75, 1973
  4. King ST, Catal. Today, 33(1-3), 173, 1997
  5. Matsuzaki T, Nakamura A, Catal. Surv. Jpn., 1, 77, 1997
  6. Ju HY, Manju MD, Kim KH, Park SW, Park DW, Korean J. Chem. Eng., 24(5), 917, 2007
  7. Kim KH, Kim DW, Kim CW, Koh JC, Park DW, Korean J. Chem. Eng., 27(5), 1441, 2010
  8. Zhang J, Wang F, Wei W, Xiao F, Sun Y, Korean J. Chem. Eng., 27(6), 1744, 2010
  9. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K, J. Catal., 192(2), 355, 2000
  10. Kizlink J, Collect. Czech. Chem. Commun., 58, 1399, 1993
  11. Sakakura T, Choi JC, Saito Y, Sako T, Polyhedron., 19, 573, 2000
  12. Kizlink J, Pastucha I, Collect. Czech. Chem. Commun., 60, 687, 1995
  13. Fang SN, Fujimoto K, Appl. Catal. A: Gen., 142(1), L1, 1996
  14. Zhao TS, Han YZ, Sun YH, Fuel Process. Technol., 62(2-3), 187, 2000
  15. Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K, Catal. Lett., 76(1-2), 71, 2001
  16. Tomishige K, Kunimori K, Appl. Catal. A: Gen., 237(1-2), 103, 2002
  17. Jiang CJ, Guo YH, Wang CG, Hu CW, Wu Y, Wang EB, Appl. Catal. A: Gen., 256(1-2), 203, 2003
  18. La KW, Youn MH, Chung JS, Baeck SH, Song IK, Solid State Phenom., 119, 287, 2007
  19. Lee HJ, Park S, Jung JC, Song IK, Korean J. Chem. Eng., 28(7), 1518, 2011
  20. Petre AL, Auroux A, Gelin P, Caldararu M, Ionescu NI, Thernochim. Acta., 79, 117, 2001
  21. Halasz J, Konya Z, Fudala A, Kiricsi I, Catal. Today, 31(3-4), 293, 1996
  22. Li YW, He DH, Yuan YB, Cheng ZX, Zhu QM, Fuel, 81(11-12), 1611, 2002
  23. Sun H, Ding YQ, Duan JZ, Zhang QJ, Wang ZY, Lou H, Zheng XM, Bioresour. Technol., 101(3), 953, 2010
  24. Lee HJ, Joe W, Song IK, Korean J. Chem. Eng., 29(3), 317, 2012
  25. Pushkar YN, Parenago OO, Fionov AV, Lunina EV, Colloids Surf. A., 158, 179, 1999
  26. Li H, Yue Y, Miao C, Xie Z, Hua W, Gao Z, Catal. Commun., 8, 1317, 2007
  27. Lee HJ, Park S, Song IK, Jung JC, Catal. Lett., 141(4), 531, 2011
  28. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41, 2008
  29. Rao GR, Rajkumar T, J. Colloid Interface Sci., 324(1-2), 134, 2008
  30. Pantu P, Kim K, Gavalas GR, Appl. Catal. A: Gen., 193(1-2), 203, 2000
  31. Dhage SR, Gaikwad SP, Muthukumar P, Mater. Lett., 58, 2704, 2004
  32. Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A, J. Catal., 269(1), 110, 2010
  33. Heracleous E, Lemonidou AA, J. Catal., 270(1), 67, 2010
  34. Ikeda Y, Asadullah M, Fujimoto K, Tomishige K, J. Phys. Chem. B, 105(43), 10653, 2001
  35. Almusaiteer K, Catal. Commun., 10, 1127, 2009