Issue
Korean Journal of Chemical Engineering,
Vol.29, No.7, 913-917, 2012
Enhancement of transglutaminase production in Streptomyces mobaraensis DSM 40587 by non-nutritional stress conditions: Effects of heat shock, alcohols, and salt treatments
Stress-mediated bioprocess is a strategy designed to enhance biological target productivity. In this study, an attempt was made to enhance transglutaminase (TGase) production by Streptomyces mobaraensis by using different stress conditions including heat shock, alcohols and salt stress. Results showed that the effects of stress on TGase production depended on the type applied. For heat shock, TGase production (1.32 U/ml) was recorded maximum in the culture treated at 48 h post inoculation in water bath at 60 ℃ for 1 min. For alcohols treatment, the maximum activity of TGase (1.77 and 1.75 U/ml) was obtained when 3% methanol was added into the medium at 0 or 24 h of fermentation. However, a 3.5-fold increased production of TGase (3.8 U/ml) was observed in the medium supplemented with 0.2mol/l MgCl2 compared with the basic medium at the beginning of fermentation. In conclusion, TGase production from S. mobaraensis was improved by heat shock, methanol and salt stress treatments, MgCl2 stress was the most effective.
[References]
  1. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R,Tanaka H, Motoki M, Agric. Biol. Chem., 53, 2613, 1989
  2. Beganovic J, Pavunc AL, Gjuracic K, Spoljarec M, Suskovic J, Kos B, J. Food Sci., 76, M124, 2011
  3. Farnsworth JP, Li J, Hendricks GM, Guo MR, Small Ruminant Res., 65, 113, 2006
  4. Jiang SJ, Zhao XH, Eur. Food Res. Technol., 231, 679, 2010
  5. Wang HW, Kim IH, Park CS, Lee JH, Korean J. Chem. Eng., 25(4), 801, 2008
  6. Suzuki S, Izawa Y, Kobayashi K, Eto Y, Yamanaka S, Kubota K, Yokozeki K, Biosci. Biotechnol. Biochem., 64, 2344, 2000
  7. Iranzo M, Aguado C, Pallotti C, Canizares JA, Mormeneo S, Microbiol-Sgm., 148, 1329, 2002
  8. Yan GL, Du GC, Li Y, Chen J, Zhong JJ, Process Biochem., 40, 963, 2005
  9. Zhu Y, Rinzema A, Tramper J, Bol J, Biotechnol. Bioeng., 50(3), 291, 1996
  10. Zheng MY, Du GC, Chen J, Lun SY, World J. Microb. Biot., 18, 767, 2002
  11. de Souza CFV, Flores SH, Ayub MAZ, Process Biochem., 41, 1186, 2006
  12. Tellez-Luis SJ, Ramirez JA, Vazquez M, Food Technol. Biotechnol., 42, 75, 2004
  13. Umakoshi H, Yoshimoto M, Shimanouchi T, Kuboi R, Komasawa I, Biotechnol. Prog., 14(2), 218, 1998
  14. Kang DH, Jeh EJ, Seo JW, Chun BH, Hur BK, Korean J. Chem. Eng., 24(4), 651, 2007
  15. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP, EMBO Rep., 9, 670, 2008
  16. Doull JL, Singh AK, Hoare M, Ayer SW, J. Ind. Microbiol., 13, 120, 1994
  17. Nakata K, Yoshimoto A, Yamada Y, Biosci. Biotechnol. Biochem., 63, 293, 1999
  18. Himabindu M, Potumarthi R, Jetty A, Process Biochem., 42, 1352, 2007
  19. Folk JE, Cole PW, J. Biol. Chem., 241, 5518, 1966
  20. Bradford MM, Anal. Biochem., 72, 248, 1976
  21. Ngo KX, Umakoshi H, Shimanouchi T, Jung HS, Morita S, Kuboi R, J. Biosci. Bioeng., 100(5), 495, 2005
  22. Fernandez MJ, Adrio JL, Piret JM, Wolfe S, Ro S, Demain AL, Appl. Microbiol. Biotechnol., 52(4), 484, 1999
  23. Haq IU, Ali S, Qadeer MA, Lqbal J, Bioresour. Technol., 86(3), 227, 2003
  24. Novotna J, Vohradsky J, Berndt P, Gramajo H, Langen H, Li XM, Minas W, Orsaria L, Roeder D, Thompson CJ, Mol. Microbiol., 48, 1289, 2003
  25. Viollier PH, Kelemen GH, Dale GE, Nguyen KT, Buttner MJ, Thompson CJ, Mol. Microbiol., 47, 699, 2003
  26. Vohradsky J, Li XM, Dale G, Folcher M, Nguyen L, Viollier PH, Thompson CJ, J. Bacteriol., 182, 4979, 2000
  27. Wang C, Long X, Mao X, Dong H, Xu L, Li Y, Microbiol.Res., 165, 221, 2010