Issue
Korean Journal of Chemical Engineering,
Vol.29, No.8, 1050-1056, 2012
Investigating the processes of contaminant removal in Fe0/H2O systems
The instability of the premise of direct quantitative contaminant reduction by elemental iron (Fe0) materials in Fe0/H2O systems is pointed out. Basic knowledge of aqueous iron corrosion shows that the Fe0 surface is not available for decontamination in nature. A comparison of the reactivity of Fe0 and Zn0 shows that the effectiveness of Fe0 materials for environmental remediation is due to the formation of a non-adhesive, porous oxide scale on Fe0. Contaminants are enmeshed within the scale and possibly reduced by FeII and H/H2. An evaluation of current experimental conditions shows that well-mixed batch systems have disturbed the process of scale formation. Therefore, the majority of published works have operatively created conditions for contaminant reduction that are not likely to occur in nature. Since working under such unrealistic conditions has mediated the above-mentioned premise, interactions in Fe0/H2O systems yielding contaminant removal should be revisited.
[References]
  1. Bigg T, Judd SJ, Environ. Technol., 21, 661, 2000
  2. Song DI, Kim YH, Shin WS, Korean J. Chem. Eng., 22(1), 67, 2005
  3. Yang JE, Kim JS, Ok YS, Kim SJ, Yoo KY, Korean J. Chem. Eng., 23(6), 935, 2006
  4. Henderson AD, Demond AH, Environ. Eng. Sci., 24, 401, 2007
  5. Choi JH, Choi SJ, Kim YH, Korean J. Chem. Eng., 25(3), 493, 2008
  6. Cundy AB, Hopkinson L, Whitby RLD, Sci. Tot. Environ., 400, 42, 2008
  7. Ryu JH, Suh DJ, Park YK, Suh YW, Korean J. Chem. Eng., 25(6), 1377, 2008
  8. Thiruverikatachari R, Vigneswaran S, Naidu R, J. Ind. Eng. Chem., 14(2), 145, 2008
  9. Kim BH, Park C, Kim YB, Jung DS, Cho HC, Park SH, Ra DG, Lee DJ, Jung SC, Korean J. Chem. Eng., 26(6), 1795, 2009
  10. Shin MC, Yang JS, Park GY, Baek K, Korean J. Chem. Eng., 28(4), 1047, 2011
  11. Comba S, Di Molfetta A, Sethi R, Water Air Soil Pollut., 215, 595, 2011
  12. Gheju M, Water Air Soil Pollut., 222, 103, 2011
  13. Tokunaga TK, Wan J, Lanzirotti A, Sutton SR, Newville M, Rao W, Environ. Sci. Technol., 41, 4326, 2007
  14. Rai D, Eary LE, Zachara JM, Sci. Total Environ., 86, 15, 1989
  15. Cantrell KJ, Kaplan DI, Wietsma TW, J. Hazard. Mater., 42, 201, 1995
  16. Noubactep C, Meinrath G, Dietrich P, Merkel B, Environ. Sci.Technol., 37, 4304, 2003
  17. Noubactep C, Meinrath G, Merkel BJ, Environ. Chem., 2, 235, 2005
  18. Eary LE, Rai D, Environ. Sci. Technol., 22, 972, 1988
  19. Eary LE, Rai D, Soil Sci. Soc. Am. J., 55, 676, 1991
  20. Gillham RW, O’Hannesin SF, Ground Water., 32, 958, 1994
  21. Matheson LJ, Tratnyek PG, Environ. Sci. Technol., 28, 2045, 1994
  22. Blowes DW, Ptacek CJ, Jambor JL, Environ. Sci. Technol., 31, 3348, 1997
  23. Buerge IJ, Hug SJ, Environ. Sci. Technol., 31, 1426, 1997
  24. Butler CE, Hayes FK, Environ. Sci. Technol., 35, 3884, 2001
  25. Hua B, Deng B, Environ. Sci. Technol., 37, 4771, 2003
  26. Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL, Environ. Microbiol., 1, 89, 1999
  27. Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI, Nature., 339, 297, 1989
  28. Gillham RW, Ground Water Monit. Remed., 23, 6, 2003
  29. Noubactep C, Open Environ. J., 1, 9, 2007
  30. de la Rive A, Ann. Chim. Phys., 43, 425, 1830
  31. Balasubramaniam R, Ramesh KAV, Dillmann P, Current Sci., 85, 1546, 2003
  32. Lewis AE, Hydrometallurgy., 104, 222, 2010
  33. Campbell JA, Allgemeine Chemie, VCH Weinheim, 1990
  34. Dickerson, RE, Gray HB, Haight GP,, Chemical Principles, Benjamin/Cummings Inc. London, Amsterdam, 1979
  35. Cabrera N, Mott NF, Rep. Prog. Phys., 12, 163, 1949
  36. Wilson ER, Ind. Eng. Chem., 15, 127, 1923
  37. Schmuki P, J. Solid State Electrochem., 6, 145, 2002
  38. Bohnsack G, Chlorid und die Korrosion von Eisen und Stahl in naturlichen Wasser, 1989 (Vulkan, Essen).
  39. Brown GE, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Gratzel M, Maciel G, McCarthy MI, Nealson KH, Sverjensky DA, Toney MF, Zachara JM, Chem. Rev., 99(1), 77, 1999
  40. Hendy SC, Laycock NJ, Ryan MP, J. Electrochem. Soc., B152, 271, 2005
  41. Scherer MM, Balko BA, Tratnyek PG, The role of oxides in reduction reactions at the metal-water interface. In Kinetics and mechanism of reactions at the mineral/water interface (Eds Sparks D, Grundl T) American Chemical Society: Washington, DC, 301-322, 1999
  42. Toney MF, Davenport AJ, Davenport LJ, Ryan MP, Vitus CM, Phys. Rev. Lett., 79, 4282, 1997
  43. Odziemkowski MS, Simpraga RP, Can. J. Chem. Rev. Can. Chim., 82, 1495, 2004
  44. Weber EJ, Environ. Sci. Technol., 30, 716, 1996
  45. Gaspar DJ, Lea AS, Engelhard MH, Baer DR, Miehr R, Tratnyek PG, Langmuir, 18(20), 7688, 2002
  46. Gerasimov Y, Dreving V, Eremin E, Kiselev A, Lebedev V, Panchenkov G, Shlygin A, Physical Chemistry, MIR Moscow, 1985
  47. White AF, Paterson ML, Geochim. Cosmochim. Acta., 60, 3799, 1996
  48. Naka D, Kim D, Strathmann TJ, Environ. Sci. Technol., 40, 3006, 2006
  49. Mishra D, Farrell J, Environ. Sci. Technol., 39, 645, 2005
  50. Stratmann M, Muller J, Corros. Sci., 36, 327, 1994
  51. Noubactep C, Environ. Technol., 29, 909, 2008
  52. Anderson PR, Benjamin MM, Environ. Sci. Technol., 19, 1048, 1985
  53. Lavine BK, Auslander G, Ritter J, Microchem. J., 70, 69, 2001
  54. Schreier CG, Reinhard M, Chemosphere., 29, 1743, 1994
  55. Blowes DW, Ptacek CJ, Benner SG, Mcrae Che WT, Bennett TA, Puls RW, J. Contam. Hydrol., 45, 123, 2000
  56. Tratnyek PG, Scherer MM, Johnson TH, Matheson LJ, Permeable reactive barriers of iron and other zero-valent metals. In Chemical Degradation Methods for Wastes and Pollutants: Environmental and Industrial Applications (Ed M.A. Tarr), 371-421, Marcel Dekker: New York, 2003
  57. Warner SD, Sorel D, Ten years of permeable reactive barriers: lessons learned and future expectations. In Chlorinated Solvent and DNAPL Remediation: Innovative Strategies for Subsurface Cleanup (Eds S.M. Henry, S.D., Warner), 36-50, American Chemical Society: Washington, DC, ACS Symp., Ser. 837, 2003
  58. Wang L, Li P, Wu Z, Yan J, Wang M, Ding Y, Synthesis., 13, 2001, 2003
  59. Franck EU, J. Chem. Thermodynamics., 19, 225, 1987
  60. Agrawal A, Tratnyek PG, Environ. Sci. Technol., 30, 153, 1996
  61. Scherer MM, Johnson K, Westall JC, Tratnyek PG, Environ. Sci. Technol., 35, 2804, 2001
  62. Bechamp AJ, Ann. Chim. Phys., 42(3), 186, 1854
  63. Swaminathan K, Anantharaman PN, Subramanian GS, Udupa HVK, J. Appl. Electrochem., 2, 169, 1972
  64. Mercer AD, Lumbard EA, Brit. Corr. J., 30, 43, 1995
  65. Noubactep C, Meinrath G, Dietrich P, Sauter M, Merkel B, Environ. Chem., 2, 71, 2005
  66. Choe S, Chang YY, Hwang KY, Khim J, Chemosphere., 41, 1307, 2000
  67. Song H, Carraway ER, Environ. Eng. Sci., 23, 272, 2006
  68. Vidic RD, Suidan MT, Environ. Sci. Technol., 25, 1612, 1991
  69. Noubactep C, Schoner A, Meinrath G, J. Hazard. Mater., B132, 202, 2006
  70. Qiu SR, Lai HF, Roberson MJ, Hunt ML, Amrhein C, Giancarlo LC, Flynn GW, Yarmoff JA, Langmuir, 16(5), 2230, 2000
  71. Noubactep C, Water SA., 36, 663, 2010
  72. Jeen SW, Gilham RW, Przepiora A, J. Contam. Hydrol., 123, 50, 2011
  73. Noubactep C, Environ. Progr. Sust. En., 29, 286, 2010
  74. Noubactep C, Freiberg Online Geol., ISSN 1434-7512, 27, 2011
  75. Noubactep C, Water SA., 37, 419, 2011
  76. Noubactep C, Fres. Environ. Bull., 20, 2632, 2011
  77. Powell MR, Puls WR, Hightower KS, Sebatini AD, Environ. Sci. Technol., 29, 1913, 1995
  78. Noubactep C, Care S, J. Hazard. Mater., 189(3), 809, 2011
  79. Noubactep C, Care S, Crane RA, Water Air Soil Pollut., DOI:10.1007/s11270-011-0951-1, 2011
  80. Gu B, Liang L, Dickey MJ, Yin X, Dai S, Environ. Sci. Technol., 32, 3366, 1998
  81. Bottero JY, Manceau A, Villieras F, Tchoubar D, Langmuir, 10(1), 316, 1994
  82. Crawford RJ, Harding IH, Mainwaring DE, Langmuir., 9, 3057, 1993
  83. Bojic A, Purenovic M, Bojic D, Water SA., 30, 353, 2004
  84. Bojic AL, Bojic D, Andjelkovic T, Water SA., 33, 297, 2007
  85. Bojic AL, Bojic D, Andjelkovic T, J. Hazard. Mater., 168(2-3), 813, 2009
  86. Noubactep C, Schoner A, J. Hazard. Mater., 175(1-3), 1075, 2010
  87. Noubactep C, Schoner A, Sauter M, Significance of oxide-film in discussing the mechanism of contaminant removal by elemental iron materials. In “Photo-Electrochemistry & Photo-Biology for the Sustainablity”; Kaneco S, Viswanathan B, Katsumata H (Eds.), Bentham Science Publishers, 1, 89-110, 2011
  88. Cornell RM, Schwertmann U, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons Inc., 2003
  89. Schwertmann U, Nature., 212, 645, 1966
  90. You Y, Han J, Chiu PC, Jin Y, Environ. Sci. Technol., 39, 9263, 2005
  91. Lackovic JA, Nikolaidis NP, Dobbs GM, Environ. Eng.Sci., 17, 29, 2000
  92. Morrison SJ, Metzler DR, Dwyer BP, J. Contam. Hydrol., 56, 99, 2002
  93. Sikora E, Macdonald DD, J. Electrochem. Soc., 147(11), 4087, 2000
  94. Lee G, Rho S, Jahng D, Korean J. Chem. Eng., 21(3), 621, 2004
  95. Gillham RW, Development of the granular iron permeable reactive barrier technology (good science or good fortune). In “Advances in environmental geotechnics: proceedings of the International Symposium on Geoenvironmental Engineering in Hangzhou, China, September 8-10, 2009”; Chen Y, Tang X, Zhan L (Eds); Springer Berlin/London, 5-15, 2010
  96. Noubactep C, Fresen. Environ. Bull., 19, 1661, 2010
  97. Noubactep C, Care S, Chem. Eng. J., 163(3), 454, 2010
  98. Noubactep C, Chem. Eng. J., 165(2), 740, 2010
  99. Antia DDJ, Sustainability., 2, 2988, 2010
  100. Giles DE, Mohapatra M, Issa TB, Anand S, Singh P, J.Environ. Manage., 92, 3011, 2011