Issue
Korean Journal of Chemical Engineering,
Vol.29, No.8, 1044-1049, 2012
Development of a PM2.5 sampler with inertial impaction for sampling airborne particulate matter
A simple and low cost PM2.5 impactor for sampling airborne particulate matter was developed, designed and evaluated. The design was an assembly of an acceleration nozzle and an impaction plate. Particles with sufficient inertia were unable to follow air streamlines and impacted on the plate. Smaller particles followed the streamlines, avoided being captured by the plate and could then be collected on a downstream filter. Analytical and numerical models were formulated to predict collection efficiency, flow fields and vectors, and particle trajectories in the impactor. The modeling suggested that an optimal operational domain exists for the PM2.5 impactor. A prototype was then built and tested. The collected particles on the impaction plate and downstream of the PM2.5 impactor were analyzed by using scanning electron microscopy. Experimental results agreed well with the theoretical predictions. Testing of the PM2.5 impactor prototype showed promising results for this airborne particulate matter sampler.
[References]
  1. Intra P, Tippayawong N, Mj. Int. J. Sci. Tech., 1, 120, 2007
  2. Hinds WC, Aerosol technology, John Wiley & Sons, New York, USA, 1999
  3. EPA. National Ambient Air Quality Standards for Particulate Matter, Final Rule, Federal Register, 62, 38651, 1997
  4. Liu BYH, Pui DYH, Atmos. Environ., 15, 589, 1981
  5. McFarland AR, Ortiz CA, Bertsch WJ, Environ. Sci.Technol., 12, 679, 1978
  6. Wedding JB, Weigand MA, Carney TC, Environ. Sci. Technol., 16, 602, 1982
  7. Intra P, CMU. J. Nat. Sci., 7, 257, 2008
  8. Andersen AA, Am. Ind. Hyg. Assoc. J., 27, 160, 1966
  9. Marple VA, Willeke K, Atmos. Environ., 10, 891, 1976
  10. Hering SV, Flagan RC, Fliedlander SK, Environ. Sci. Technol., 12, 667, 1978
  11. Hering SV, Fliedlander SK, Collins JJ, Richards LW, Environ. Sci. Technol., 13, 184, 1978
  12. Biswas P, Flagan RC, J. Aerosol Sci., 19, 113, 1988
  13. Lee SM, Chon BD, Kim SG, Korean J. Chem. Eng., 8(4), 220, 1991
  14. Kim HT, Kim YJ, Lee KW, Aerosol Sci. Technol., 29, 350, 1998
  15. Marjamaki M, Keskinen J, Chen DR, Pui DYH, J. Aerosol Sci., 31(2), 249, 2000
  16. Peters TM, Vanderpool RW, Wiener RW, Aerosol Sci. Technol., 34, 389, 2001
  17. Huang CH, Tsai CJ, Aerosol Air Qual. Res., 2, 01, 2002
  18. Johna AC, Kuhlbuscha TAJ, Fissanb H, Brkerc G, Geuekec KJ, Aerosol Sci. Technol., 37, 694, 2003
  19. Kim DS, Lee KW, Kim YJ, J. Aerosol Sci., 37, 1016, 2006
  20. Otani Y, Eryu K, Furuuchi M, Tajima N, Tekasakul P, Aerosol Air Qual. Res., 7, 343, 2007
  21. Furuuchi M, Eryu K, Nagura M, Hata M, Kato T, Tajima N, Sekiguchi K, Ehara K, Seto T, Otani Y, Aerosol Air Qual. Res., 10, 185, 2010
  22. Cohen JJ, Montan DN, Annals Ind. Hyg. Assoc. J., 28, 95, 1967
  23. Lundgren DA, J. Air Pollut. Contr. Assoc., 17, 225, 1967
  24. Marple VA, Aerosol Sci. Technol., 38, 247, 2004
  25. Vinchurkar S, Longest PW, Peart J, J. Aerosol Sci., 40, 807, 2009
  26. Winklmayr W, Wang HC, John W, Aerosol Sci. Technol., 13, 322, 1990
  27. CFD-RC, CFD-ACE+ User Manual, http://www.cfdrc.com, Huntsville, USA, 2003
  28. Intra P, Tippayawong N, Int. Conf. on Technology and Innovation for Sustainable Development, Nong Khai, Thailand, 4-6 March, 2010
  29. Rasband WS, ImageJ, National Institutes of Health, Bethesda, Maryland, USA, 2004
  30. Willeke K, Baron PA, Aerosol Measurement, John Wiley & Sons, New York, USA, 1993