Issue
Korean Journal of Chemical Engineering,
Vol.29, No.8, 1025-1037, 2012
Analytical investigation of temperature distribution and flame speed across the combustion zones propagating through an iron dust cloud utilizing a three-dimensional mathematical modeling
In the analytical model of iron dust cloud combustion presented in this article, by solving the 3D energy equations, the gas temperature distribution in the channel and a new equation for flame speed are obtained. This equation can determine the relationship between flame speed and particle radius and dust concentration. The equations are written in two limiting cases: lean and rich mixtures. Flame structure consists of preheat, reaction, and post-flame zones for the lean mixture and preheat and reaction zones for the rich mixture. Equations in both mixture conditions are solved using the finite Fourier transform method. By solving the energy equations in each zone and matching the temperature and heat flux at the interfacial boundaries, algebraic equations of flame speed are obtained. The obtained gas temperature distribution in different flame zones in the channel and also flame speed changes in terms of particles’ radius, equivalence ratio, and channel width in both lean and rich mixtures are presented in the results section.
[References]
  1. Bidabadi M, Fereidooni J, Tavakoli R, Mafi M, Korean J. Chem. Eng., 28(2), 461, 2011
  2. Bidabadi M, Barari G, Azimi M, Mafi M, Int. J. Recent Trend. Eng., 1(5), 26, 2009
  3. Baker WE, Tang MJ, Gas, dust and hybrid explosions, Elsevier, New York, 1991
  4. Cashdollar KL, J. Loss Prev. Process Ind., 9(1), 65, 1996
  5. Dahoe AE, Zevenbergen JF, Lemkowitz SM, Scarlett B, J. Loss Prev. Process Ind., 9(1), 33, 1996
  6. Hertzberg M, Zlochower IA, Cashdollar KL, 24th Symposium (international) on Combustion, Pittsburgh, PA: The Combustion Institute, 1827, 1992
  7. Tamanini F, Valiulis JV, J. Loss Prev. Process Ind., 9(1), 105, 1996
  8. Cashdollar KL, Hertzberg M, Zlochower IA, 22th Symposium (international) on Combustion, Pittsburgh, PA: The Combustion Institute, 1757, 1988
  9. Dreizin EL, Hoffmann VK, Combust. Flame, 118(1-2), 262, 1999
  10. Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 14(3), 153, 2001
  11. Matsuda T, Yashima M, Nifuku M, Enomoto H, J. Loss Prevent. Proc., 14(6), 449, 2001
  12. Chen JL, Dobashi R, Hirano T, J. Loss Prev. Process Ind., 9(3), 225, 1996
  13. Bidabadi M, Rahbari A, Combust. Explo. Shock+., 45(3), 278, 2009
  14. Sun JH, Dobashi R, Hirano T, 27th Symposium (International) on Combustion, Pittsburgh, PA: The Combustion Institute, 2405, 1998
  15. Sun JH, Dobashi R, Hirano T, Combust. Sci. Technol., 150(1-6), 99, 2000
  16. Sun JH, Dobashi R, Hirano T, J. Loss Prevent. Proc., 14, 463, 2001
  17. Sun JH, Dobashi R, Hirano T, Combust. Flame, 134(4), 381, 2003
  18. Sun JH, Dobashi R, Hirano T, J. Loss Prevent. Proc., 19, 135, 2006
  19. Beach DB, Rondinone AJ, Sumpter BG, Labinov SD, Richards RK, J. Energy Res.-ASME., 129, 29, 2007
  20. Ballal DR, Proc R. Soc. Lond. A., 385, 21, 1983
  21. Dreizin EL, Combust. Flame., 105(4), 541, 1996
  22. Goroshin S, Bidabadi M, Lee JHS, Combust. Flame., 105, 147, 1996
  23. Wu HC, Chang RC, Hsiao HC, J. Loss Prevent. Proc., 22, 21, 2009
  24. Tang FD, Goroshin S, Higgins A, Lee, J, Proc. Combust. Inst., 32(2), 1905, 2009
  25. Hirano T, Sato Y, Sato K, J. Saw. Oxid. Commun., 6, 113, 1984
  26. Incropera FP, De Witt DP, Bergman TL, Lavine AS, Fundamentals of heat and mass transfer, John Wiley & Sons Inc., New York, 2007
  27. Goroshin S, Kolbe M, Lee JHS, Proc. Combust. Inst., 28, 2811, 2000
  28. Myint-U D, Debnath L, Linear partial differential equations for scientists and engineers, Birkhauser, Berlin, 2007
  29. Huang Y, Risha GA, Yang V, Yetter RA, Combust. Flame, 156(1), 5, 2009
  30. Huang Y, Risha GA, Yang V, Yetter RA, In Proceedings of the 43rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10, 2005
  31. Goroshin S, Fomenko I, Lee JHS, Proc. Combust. Inst., 26, 1961, 1996
  32. Jadidi M, Bidabadi M, Hosseini ME, P. I. Mech. Eng. G-J Aer., 223, 915, 2009
  33. Bidabadi M, Haghiri A, Rahbari A, J. Hazard. Mater., 176(1-3), 146, 2010
  34. Turns SR, An introduction to combustion, McGraw-Hill, Boston, 2000
  35. Green DW, Perry RH, Perry’s chemical engineers’ handbook, McGraw-Hill, New York, 2008
  36. Steinberg TA, Wilson DB, Stoltzfus JM, in Flammability and sensitivity of materials in oxygen-enriched atmosphere, William TR, Ting CC, Steinberg TA Eds., ASTM Publication, Ann Arbor, 1997
  37. Bidabadi M, PhD Thesis, MC Gill University, Canada, 1995
  38. Arpaci VS, Conduction heat transfer, Addison-Wesley, Reading, MA, 1966
  39. Wylie CR, Barrett LC, Advanced engineering mathematics, McGraw-Hill, New York, 1995
  40. Zeldovich TB, Barenblatt GI, Librovich VD, Makhviladze GM, The mathematical theory of combustion and explosions, Consultants Bureau, New York, 1985
  41. Markstain GH, AIAA J., 1(3), 550, 1963
  42. Gordon AS, Drew CM, Prentice JL, Knipe RH, AIAA J., 6(4), 577, 1968