Issue
Korean Journal of Chemical Engineering,
Vol.29, No.8, 1094-1101, 2012
A novel synthesis of spherical LiFePO4/C composite using Fe1.5P and mixed lithium salts via oxygen permeation
A novel route was designed to synthesize LiFePO4/C composites by using the Fe1.5P byproduct, mixed lithium salts, and permeated oxygen from air via a rheological phase method. The reaction process was investigated with various techniques. When the calcining time was increased from 10 to 30 h, the gradual formation of olivine structure was observed. The growth kinetics of the crystals was analyzed. SEM and TEM results indicated the as-synthesized LiFePO4 was constituted of small spheres covered with carbon particles. The discharge capacity of the LiFePO4/C composite prepared at ~700 ℃ for ~25 h could reach 139.7 mAh g^(-1) and still remained 130.2 mAh g^(-1) after 15 cycles at 0.2 C rate, comparable to that of the reported LiFePO4/C composite using conventional methods. Cyclic voltammogram confirmed the LiFePO4/C composite had a high purity and good lithium ion insertion/desertion redox behavior.
[References]
  1. Padhi AK, Nanjundaswamy KS, Goodenough JB, J. Electrochem. Soc., 144(4), 1188, 1997
  2. Herle PS, Ellis B, Coombs N, Nazar LF, Nature Mater., 3, 147, 2004
  3. Wang Y, Chen Y, Cheng S, He L, Korean J. Chem. Eng., 28(3), 964, 2011
  4. Li JL, Suzukib T, Naga K, Ohzawa Y, Nakajima T, Mater.Sci. Eng. B., 142, 86, 2007
  5. Xu YB, Lu YJ, Yan L, Yang ZY, Yang RD, J. Power Sources, 160(1), 570, 2006
  6. Chen ZY, Zhu HL, Ji S, Fakir R, Linkov V, Solid State Ion., 179(27-32), 1810, 2008
  7. Kim CW, Park JS, Lee KS, J. Power Sources, 163(1), 144, 2006
  8. Wang GX, Yan KP, China Patent, 200,810,045,243.1, 2008
  9. Liu R, Wang GX, Yan KP, Li XL, Chin. J. Syn. Chem., 18, 639, 2010
  10. Wang GX, Xu JJ, Wen M, Cai R, Ran R, Shao ZP, Solid State Ion., 179(21-26), 946, 2008
  11. Chen JJ, Vacchio MJ, Wang SJ, Chernova N, Zavalij PY, Whittingham MS, Solid State Ion., 178(31-32), 1676, 2008
  12. Kim GH, Myung ST, Kim HS, Sun YK, Electrochim. Acta, 51(12), 2447, 2006
  13. Jokanovic V, Spasic AM, Uskokovic D, J. Colloid Interface Sci., 278(2), 342, 2004
  14. Wang GX, Zhang BL, Yu ZL, Qu MZ, Solid State Ion., 176, 1169, 2005
  15. Liang YG, Yang SJ, Yi ZH, Lei XF, Sun JT, Zhou YH, Mater. Sci. Eng. B., 121, 152, 2005
  16. Zhou WJ, Bao SJ, He BL, Liang YY, Li HL, Electrochim. Acta, 51(22), 4701, 2006
  17. Jiang J, Li LC, Xu F, Xie YL, Mater. Sci. Eng. B., 137, 166, 2007
  18. Liu H, Feng Y, Wang K, Xie JY, J. Phys. Chem. Solids., 69, 2037, 2008
  19. Liao CH, Bull. Chin. Ceram. Soc., 3, 56, 2004
  20. Heuer AH, J. Eur. Ceram. Soc., 28, 1495, 2008
  21. Ganesh I, Reddy GJ, Sundararajan G, Olhero SM, Torres PMC, Ferreira JMF, Ceram. Int., 36, 473, 2010
  22. Zhao M, Wang GX, Li XL, Wang F, Liu R, Yan KP, Met.Mater. Int., 16, 993, 2010
  23. Wang GX, Yan KP, Yu ZL, Qu MZ, J. Appl. Electrochem., 40(4), 821, 2010
  24. Dean JA, Lange's Chemistry Handbook (15th Ed.), McGraw-Hill, New York, 1999
  25. Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N, Electrochim. Acta, 49(24), 4213, 2004
  26. Choi D, Wang D, Viswanathan VV, Bae IT, Wang W, Nie Z, Zhang JG, Graff GL, Liu J, Yang Z, Duong T, Electrochem.Commun., 12, 378, 2010