Issue
Korean Journal of Chemical Engineering,
Vol.29, No.5, 567-573, 2012
Design and optimization of a dividing wall column by factorial design
A factorial design methodology was applied to the design of a dividing wall column, solving the complex multivariable problems and simultaneously optimizing the interacting variables to achieve the best design with respect to total annual cost. Column structure was practically optimized with a minimum of simulation runs. The proposed design method was tested in the design and optimization of an NGL recovery system; it allowed interactions between variables to be identified and quantified. The column system designed by the proposed method reduced reboiler energy consumption and total annual cost by 28.23% and 25.49%, respectively, in case 1, and those by 25.63% and 18.85%, respectively, over conventional distillation in case 2.
[References]
  1. Annakou O, Mizsey P, Ind. Eng. Chem. Res., 35(6), 1877, 1996
  2. Jimenez A, Ramirez N, Castro A, Hernandez S, Trans.IChemE., 81, 518, 2003
  3. Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 605, 2003
  4. Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 43(14), 3994, 2004
  5. Kim YH, Nakaiwa M, Hwang KS, Korean J. Chem. Eng., 19(3), 383, 2002
  6. Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098, 2004
  7. Poth N, Brusis D, Stichlmair J, Chem. Ing. Technol., 76, 1811, 2004
  8. Amminudin KA, Smith R, Thong DYC, Towler GP, Trans.IChemE., 79, 701, 2001
  9. Long NVD, Lee S, Lee M, Chem. Eng. Process., 49(8), 825, 2010
  10. Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348, 2011
  11. Long NVD, Lee MY, Asia Pac. J. Chem. Eng., 6, 338, 2011
  12. Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47, 2009
  13. Dejanovic I, Matijasevic L, Jansen H, Olujic Z, Ind. Eng. Chem. Res., 50(9), 5680, 2011
  14. Kolbe B, Wenzel S, Chem. Eng. Process., 43, 339, 2004
  15. Vazquez-Castillo JA, Venegas-Sanchez JA, Segovia-Hernandez JG, Hernandez-Escoto H, Hernandez S, Gutierrez-Antonio C, Briones-Ramirez A, Comput. Chem. Eng., 33(11), 1841, 2009
  16. Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559, 2010
  17. Yeomans H, Grossmann IE, Ind. Eng. Chem. Res., 39(11), 4326, 2000
  18. Caballero JA, Grossmann IE, Ind. Eng. Chem. Res., 40(10), 2260, 2001
  19. Dunnebier G, Pantelides CC, Ind. Eng. Chem. Res., 38(1), 162, 1999
  20. Long NVD, Lee MY, Dividing wall column structure design using response surface methodology, Comput. Chem. Eng., In press, 2012
  21. Montgomery DC, Design and analysis of experiments, 3rd Ed.,New York, John Wiley & Sons, 1991
  22. Carvalho CML, Cabral JMS, Aires-Barros MR, Enzyme Microb. Technol., 24(8-9), 569, 1999
  23. Cestari AR, Airoldi C, Bruns RE, Colloids Surfaces A., 117, 7, 1996
  24. Cestari AR, Vieira EFS, Mota JA, J. Hazard. Mater., 160(2-3), 337, 2008
  25. Persson K, Astrom O, J. Chromatogr. B: Biomed. Sci. Appl., 697, 207, 1997
  26. Amminudin KA, Smith R, Trans. IChemE., 79, 716, 2001
  27. Klemola KT, Ilme JK, Ind. Eng. Chem. Res., 35(12), 4579, 1996
  28. Aspen Technology, Aspen HYSYS Thermodynamics COM Interface, Version Number V7.1, 2009
  29. Manley, Deethanizer/Depropanizer Sequences with Thermal and Thermo Mechanical Coupling and Component Distribution, US Patent, 5,673,571, 1997
  30. Nejad SJ, Abolghasemi H, Moosavian MA, Maragheh MG, Chem. Eng. Res. Des., 89(6A), 827, 2011
  31. Sinnott RK, Chemical Engineering Design (4th Ed.), Coulson & Richardson’s Chemical Engineering Series Vol. 6, Elsevier Butterworth Heinemann, Oxford, 2005
  32. Biegler LT, Grossmann IE, Westerberg AW, Systematic Methods of Chemical Process Design, Prentice Hall Inc., New Jersey, 1997
  33. Krajnc M, Glavic P, Comput. Chem. Eng., 20(S), 183, 1996
  34. Smith R, Chemical Process Design, McGraw Hill, New York, 1995