Issue
Korean Journal of Chemical Engineering,
Vol.29, No.7, 935-940, 2012
Diffusion coefficients of supercritical carbon dioxide and its mixtures using molecular dynamic simulations
Molecular dynamic simulations have been evaluated for systems containing supercritical carbon dioxide to predict high-pressure diffusion coefficients of binary mixtures. Diffusion coefficients of high boiling compounds in supercritical fluids are important for the design of supercritical extractors, separators and reactors. Since high-pressure experiments are time intensive and difficult to perform, molecular simulations could prove a useful framework to obtain thermodynamic properties; however, their reliability is still in question. In this work, an NVT ensemble single site model molecular dynamic simulation using gear predictor corrector algorithm has been applied to calculate diffusion coefficients of carbon dioxide, naphthalene, 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene in supercritical carbon dioxide system at 317.5 K. The Lennard-Jones (12-6) and the Coulomb potential function have been combined into an intermolecular potential function to measure the binary molecular interaction. The simulation results of the diffusion coefficients are being compared with similar experimental data near the critical points. The calculated diffusion coefficients for each system behaved as a monotonic decreasing function of the molar density and the molecular simulations results, and the selected experimental data are in good agreement.
[References]
  1. Nakanishi K, Fluid Phase Equilib., 144(1-2), 217, 1998
  2. Tsekhanskaya YV, Iomtev MB, Mushkina EV, Russ. J. Phys.Chem., 38, 1173, 1996
  3. Nishiumi H, Fujita M, Agou K, Fluid Phase Equilib., 117(1-2), 356, 1996
  4. Ago K, Nishiumi H, Ind. Eng. Chem. Res., 37(5), 1692, 1998
  5. Higashi H, Iwai Y, Nakamura Y, Yamamoto S, Arai Y, Fluid Phase Equilib., 166(1), 101, 1999
  6. Fermeglia M, Pricl S, Fluid Phase Equilib., 166(1), 21, 1999
  7. Kiran E, Brennecke JF, Supercritical fluid engineering science, American Chemical Society Symposium Series, Los Angeles, 1991
  8. Bueno JL, Suarez JJ, Dizy J, Medina I, J. Chem. Eng., 38, 344, 1998
  9. Nasrabad AE, J. Chem. Phys., 130, 024503, 2009
  10. Eaton AP, Akgerman A, Ind. Eng. Chem. Res., 36(3), 923, 1997
  11. Xu WH, Yang JC, Hu YY, J. Phys. Chem. B, 113(14), 4781, 2009
  12. Fermeglia M, Pricl S, AIChE J., 45(12), 2619, 1999
  13. Higashi H, Iwai Y, Arai Y, Ind. Eng. Chem. Res., 39(12), 4567, 2000
  14. Higashi H, Iwai Y, Uchida H, Arai Y, J. Supercrit. Fluids, 13(1), 93, 1998
  15. Higashi H, Iwai Y, Arai Y, Fluid Phase Equilib., 234(1-2), 51, 2005
  16. Higashi H, Iwai Y, Takahashi Y, Uchida H, Arai Y, Fluid Phase Equilib., 144(1-2), 269, 1998
  17. Raabe G, Todd BD, Sadus RJ, J. Chem. Phys., 123, 034511, 2005
  18. Wick CD, Martin MG, Siepmann JI, J. Phys. Chem. B, 104(33), 8008, 2000
  19. Vorholz J, Harismiadis VI, Rumpf B, Panagiotopoulos AZ, Maurer G, Fluid Phase Equilib., 170(2), 203, 2000
  20. Srivastava A, Alleman C, Ghosh S, Lee LJ, Modelling Simul.Mater. Sci. Eng., 18, 22, 2010
  21. Iwai Y, Uchida H, Koga Y, Arai Y, Mori Y, Ind. Eng. Chem. Res., 35(10), 3782, 1996
  22. Harris JG, Yung KH, J. Phys. Chem., 99(31), 12021, 1995
  23. Potoff JJ, Errington JR, Panagiotopoulos AZ, Mol. Phys., 97, 1073, 1999
  24. Higashi H, Iwai Y, Arai Y, Chem. Eng. Sci., 56(10), 3027, 2001
  25. White A, DSTO aeronautical and maritime research laboratory, Melbourne, 2000
  26. Meier K, Computer simulation and interpretation of the transport coefficients of the lennard-jones model fluid, Dissertation, University of the Federal Armed Forces Hamburg, 2002
  27. Attig N, Binder K, Grubmueller H, Kremer K, NIC Series., 23, 1, 2004
  28. Allen MP, Tildesley DJ, Computer simulation of liquids, Clarendon Press, Oxford, 1987
  29. Meier K, Laesecke A, Kabelac S, Int. J. Thermodynam., 22, 161, 2001
  30. Kolafa J, J. Chem. Phys., 122, 164105, 2005
  31. Cramer CJ, Essentials of computational chemistry, John Wiley & Sons, Ltd., West Sussex, 2004
  32. Hou LJ, Miskovic ZL, Comput. Phys., arXiv:0806. 3912v2, 2008
  33. Ware W, Distributed molecular modeling over very-low-bandwidth computer networks, The Fifth Foresight Conference on Molecular Nanotechnology, 1997
  34. McGaughey GB, Gagne M, Rappe AK, J. Biological Chem., 273, 15458, 1998
  35. O’hern HA, Martin JJ, Ind. Eng. Chem., 47, 2081, 1955
  36. Etesse P, Zega JA, Kobayashi R, J. Chem. Phys., 97, 2022, 1992
  37. Lamb DM, Adamy ST, Woo KW, Jonas J, J. Phys. Chem., 93, 5002, 1989