Issue
Korean Journal of Chemical Engineering,
Vol.29, No.3, 404-412, 2012
A crossover quasi-chemical nonrandom lattice fluid model for pure carbon dioxide and hydrocarbons
Thequasi-chemical nonrandom lattice fluid model is capable of describing thermodynamic properties for complex systems containing associating fluids, polymer, biomolecules and surfactants, but this model fails to reproduce the singular behavior of fluids in the critical region. In this research, we used the quasi-chemical nonrandom lattice fluid model and combined this model with a crossover theory to obtain a crossover quasi-chemical nonrandom lattice fluid model which incorporated the critical scaling laws valid asymptotically close to the critical point and reduced to the original quasi-chemical nonrandom model far from the critical point. The crossover quasi-chemical nonrandom lattice fluid model showed a great improvement in prediction of the volumetric properties and second-order derivative properties near the critical region.
[References]
  1. Sengers JMHL, Fluid Phase Equilib., 158-160, 3, 1999
  2. Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2352, 1976
  3. Lacombe RH, Sanchez IC, J. Phys. Chem., 80, 2368, 1976
  4. Shin MS, Kim H, Fluid Phase Equilib., 246(1-2), 79, 2006
  5. Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 469, 2006
  6. Shin MS, Yoo KP, Lee CS, Kim H, Korean J. Chem. Eng., 23(3), 476, 2006
  7. Gauter K, Heidemann RA, Ind. Eng. Chem. Res., 39(4), 1115, 2000
  8. Burstyn HC, Sengers JV, Phys. Rev. Lett., 45, 259, 1980
  9. Sengers JV, Levelt-Sengers JMH, Ann. Rev. Phys. Chem., 37, 189, 1986
  10. Kiselev SB, Friend DG, Fluid Phase Equilib., 162(1-2), 51, 1999
  11. Kiselev SB, Fly JF, Fluid Phase Equilib., 174(1-2), 93, 2000
  12. Lee Y, Shin MS, Yeo JK, Kim H, Fluid Phase Equilib., 39, 1257, 2007
  13. Shin MS, Lee Y, Kim H, J. Chem. Thermodyn., 40(2), 174, 2008
  14. Lee Y, Shin MS, Ha B, Kim H, J. Chem. Thermodyn., 40(5), 741, 2008
  15. Lee Y, Shin MS, Kim H, J. Chem. Phys., 129, 203503, 2008
  16. You SS, Yoo KP, Lee CS, Fluid Phase Equilib., 93, 193, 1994
  17. You SS, Yoo KP, Lee CS, Fluid Phase Equilib., 93, 215, 1994
  18. Yeom MS, Yoo KP, Park BH, Lee CS, Fluid Phase Equilib., 158-160, 143, 1999
  19. Kang JW, Lee JH, Yoo KP, Lee CS, Fluid Phase Equilib., 194-197, 77, 2002
  20. Shin MS, Kim H, Fluid Phase Equilib., 256(1-2), 27, 2007
  21. Shin MS, Kim H, J. Chem. Thermodyn., 40(7), 1110, 2008
  22. Jang SH, Shin MS, Kim HY, Korean J. Chem. Eng., 26(1), 225, 2009
  23. Shin MS, Lee JH, Kim H, Fluid Phase Equilib., 272(1-2), 42, 2008
  24. Shin MS, Kim H, Fluid Phase Equilib., 270(1-2), 45, 2008
  25. Park CI, Shin MS, Kim H, J. Chem. Thermodyn., 41(1), 30, 2009
  26. Panayiotou C, Vera JH, Polymer J., 14, 681, 1982
  27. Kumar SK, Suter UW, Reid RC, Ind. Eng. Chem. Res., 26, 2532, 1987
  28. Kiselev SB, Ely JF, Fluid Phase Equilib., 119, 8645, 2003
  29. Anisimov MA, Kiselev SB, Sengers JV, Tang S, Physica A., 188, 487, 1992
  30. Lemmon EW, McLinden MO, Friend DG, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, 2001
  31. Kang J, Yoo K, Kim H, Lee J, Yang D, Lee C, Int. J. Thermophys., 22, 487, 2001
  32. Anisimov MA, Beketov VG, Voronov VP, Nagaev VB, Smimov VA, Teplofiz. Svoistva Veschestv Mater. (USSR)., 16, 124, 1982
  33. Abdulagatov IM, Kiselev SB, Levina LN, Zakaryaev ZR, Mamchonkova ON, Int. J. Thermoyphys., 17, 423, 1996
  34. Abdulagatov IM, Polikhronidi NG, Batyrova RG, J. Chem. Thermodyn., 26(10), 1031, 1994