Issue
Korean Journal of Chemical Engineering,
Vol.29, No.2, 169-172, 2012
Performance of Ni-added Pd-Ag/Al2O3 catalysts in the selective hydrogenation of acetylene
Effects of Ni addition on the performance of Pd-Ag/Al2O3 catalysts in the selective hydrogenation of acetylene were investigated. Ni-added Pd-Ag catalysts showed higher conversions than Ni-free Pd-Ag catalyst under hydrogen-deficient reaction conditions, hydrogen/acetylene <2.0, due to the spillover of hydrogen from reduced Ni to Pd and the suppression of hydrogen penetration into the Pd bulk phase, which enriched the Pd surface with hydrogen. Ethylene selectivity was also increased by Ni addition because the amounts of surface hydrogen originating from the Pd bulk phase, which was responsible for the full hydrogenation of ethylene to ethane, were decreased due to the presence of Ni at the sub-surface of Pd-Ag particles. Added Ni also modified the geometric nature of the Pd surface by blocking large ensembles of Pd into isolated ones, which eventually improved ethylene selectivity.
[References]
  1. Sarkany A, Beck A, Horvath A, Revay Z, Guczi L, Appl. Catal. A: Gen., 253(1), 283, 2003
  2. Molnar A, Sarkany A, Varga M, J. Mol. Catal. A-Chem., 173(1-2), 185, 2001
  3. Pradier CM, Mazina M, Berthier Y, Oudar J, J. Mol. Catal., 89, 211, 1994
  4. Mei DH, Neurock M, Smith CM, J. Catal., 268(2), 181, 2009
  5. Zea H, Lester K, Datye AK, Rightor E, Gulotty R, Waterman W, Smith M, Appl. Catal. A: Gen., 282(1-2), 237, 2005
  6. Leviness S, Nair V, Weiss AH, Schay Z, Guczi L, J. Mol.Catal., 25, 131, 1984
  7. Wongwaranon N, Mekasuwandumrong O, Praserthdam P, Panpranot J, Catal. Today, 131(1-4), 553, 2008
  8. Panpranot J, Kontapakdee K, Praserthdam P, Appl. Catal. A: Gen., 314(1), 128, 2006
  9. Kim WJ, Shin EW, Kang JH, Moon SH, Appl. Catal. A: Gen., 251(2), 305, 2003
  10. Praserthdam P, Ngamsom B, Bogdanchikova N, Phatanasri S, Pramotthana M, Appl. Catal. A: Gen., 230(1-2), 41, 2002
  11. Zhang QW, Li J, Liu XX, Zhu QM, Appl. Catal. A: Gen., 197(2), 221, 2000
  12. Miegge P, Rousset JL, Tardy B, Massardier J, Bertolini JC, J. Catal., 149(2), 404, 1994
  13. Khanra BC, Menon M, Chem. Phys. Lett., 305, 89, 1999
  14. Bozzolo G, Noebe RD, Khalil J, Morse J, Appl. Surf. Sci., 219(1-2), 149, 2003
  15. Valcarcel A, Morfin F, Piccolo L, J. Catal., 263(2), 315, 2009
  16. Moon SH, Windawi H, Katzer JR, Ind. Eng. Chem. Fundam., 20, 396, 1981
  17. Kim WJ, Choi CH, Moon SH, Korean J. Chem. Eng., 19(4), 617, 2002
  18. Jin YM, Datye AK, Rightor E, Gulotty R, Waterman W, Smith M, Holbrook M, Maj J, Blackson J, J. Catal., 203(2), 292, 2001
  19. Primet M, Mathieu MV, Sachtler WMH, J. Catal., 44, 324, 1976
  20. Tanksale A, Beltramini JN, Dumesic JA, Lu GQ, J. Catal., 258(2), 366, 2008
  21. Kim JP, Korean J. Chem. Eng., 21(2), 385, 2004
  22. Conrad H, Ertl G, Latta EE, Sur. Sci., 41, 435, 1974
  23. Gdowski GE, Felter TE, Stulen RH, Sur. Sci., 181, L147, 1987
  24. Lamb RN, Ngamsom B, Trimm DL, Gong B, Silveston PL, Praserthdam P, Appl. Catal. A: Gen., 268(1-2), 43, 2004
  25. Yamamoto Y, Nawa N, Nishimoto S, Kameshima Y, Matsuda M, Miyake M, Int. J Hydrog. Energy., 36, 5739, 2011
  26. Techner SJ, Mazabrard AR, Pajonk G, Gardes GEE, Hoang-Van C, J. Colloid Int. Sci., 58, 88, 1977
  27. Borodzinki A, Catal. Rev.-Sci. Eng., 48(2), 91, 2006
  28. Ge Q, Neurock M, Chem. Phys. Lett., 358(5-6), 377, 2002