Issue
Korean Journal of Chemical Engineering,
Vol.29, No.2, 228-234, 2012
Pervaporation properties of polyvinyl alcohol/ceramic composite membrane for separation of ethyl acetate/ethanol/water ternary mixtures
In further purification of ethyl acetate (EAC) process, azeotropic distillation or extractive distillation is usually applied. High energy consumption limits the economic profit of the process. In this study, pervaporation separation of EAC/ethanol (EA)/water ternary mixtures using the ceramic-supported polyvinyl alcohol (PVA) composite membrane was investigated to substitute the azeotropic distillation or extractive distillation. Swelling experiments were performed to evaluate the sorption characteristic of the membrane. Flory-Huggins theory was applied to study the interaction between the membrane and the penetrant. The UNIFAC model was adopted to investigate the variation of the penetrant activity in the membrane. The effects of operation temperature, feed water content and feed flow rate on the PV performance of the membrane were systematically investigated. The composite membrane exhibited high PV performance with the total flux of 2.1 kg·m^(-2)·h^(-1) and 94.9 wt% permeate concentration of water (operation condition: feed composition 82.6 wt% EAC, 8.4 wt% EA, 9 wt% water, feed temperature 60℃ , feed flow rate 252 mL·min^(-1)). The PV performance of the membrane varied slightly over a continuous PV experiment period of 110 h. Our results demonstrated that the PVA/ceramic membrane was a potential candidate for the purification of EAC/EA/water ternary mixtures.
[References]
  1. Dutia P, Chemical Weekly-Bombay-., 49, 176, 2004
  2. Szanyi A, Mizsey P, Fonyo Z, Ind. Eng. Chem. Res., 43(26), 8269, 2004
  3. Feng XS, Huang RY, Ind. Eng. Chem. Res., 36(4), 1048, 1997
  4. Chapman PD, Tan XY, Livingston AG, Li K, Oliveira T, J. Membr. Sci., 268(1), 13, 2006
  5. Sommer S, Melin T, Chem. Eng. Process., 44(10), 1138, 2005
  6. Devi DA, Smitha B, Sridhar S, Jawalkar SS, Aminabhavi TM, J. Chem. Technol. Biotechnol., 82(11), 993, 2007
  7. Chang KS, Huang YH, Lee KR, Tung KL, J. Membr. Sci., 354, 93, 2010
  8. Mao ZM, Cao YM, Jie XM, Kang GD, Zhou MQ, Yuan Q, Sep. Purif. Technol., 72(1), 28, 2010
  9. Jiang LY, Chung TS, Rajagopalan R, AIChE J., 53(7), 1745, 2007
  10. Chang JH, Yoo JK, Ahn SH, Lee KH, Ko SM, Korean J. Chem. Eng., 15(1), 28, 1998
  11. Choi HS, Hong SD, Hwang GJ, Park CS, Bae KK, Onuki KR, Korean J. Chem. Eng., 23(2), 288, 2006
  12. Nguyen HH, Jang NJ, Choi SH, Korean J. Chem. Eng., 26(1), 1, 2009
  13. Salt Y, Hasanoglu A, Salt I, Keleser S, Ozkan S, Dincer S, Vacuum., 79, 215, 2005
  14. Shaban HI, J. Appl. Polym. Sci., 70(12), 2361, 1998
  15. Yuan HK, Xu ZL, Shi JH, Ma XH, J. Appl. Polym. Sci., 109(6), 4025, 2008
  16. Devi DA, Raju KVSN, Aminabhavi TM, J. Appl. Polym. Sci., 103(5), 3405, 2007
  17. Zhu YX, Xia SS, Liu GP, Jin WQ, J. Membr. Sci., 349, 341, 2010
  18. Zhang XH, Liu QL, Xiong Y, Zhu AM, Chen Y, Zhang QG, J. Membr. Sci., 327(1-2), 274, 2009
  19. Xia SS, Dong XL, Zhu YX, Wei W, Xiangli FJ, Jin WQ, Sep. Purif. Technol., 77(1), 53, 2011
  20. Wijmans JG, Baker RW, J. Membr. Sci., 107(1-2), 1, 1995
  21. Oishi T, Prausnitz JM, Ind. Eng. Chem. Process Des. Dev., 17, 333, 1978
  22. Fredenslund A, Gmehling J, Rasmussen P, Vapour-Liquid Equilibria Using UNIFAC, Elsevier Science Publishers B V, Amsterdam, 1977
  23. Xiangli FJ, Chen YW, Jin WQ, Xu NP, Ind. Eng. Chem. Res., 46(7), 2224, 2007
  24. Mulder MHV, Smolders CA, J. Membr. Sci., 17, 289, 1984
  25. Chang KS, Hsiung CC, Lin CC, Tung KL, J. Phys. Chem. B, 113(30), 10159, 2009