Issue
Korean Journal of Chemical Engineering,
Vol.17, No.1, 86-92, 2000
Characterization of Tungsten Oxide Supported on TiO2 and Activity for Acid Catalysis
Tungsten oxide-titania catalysts were prepared by drying powdered Ti(OH)4 with ammonium metatungstate aqueous solution, followed by calcining in air at high temperature. Characterization of prepared catalysts was performed by using FTIR, Raman, XPS, XRD and DSC and by measuring surface area. Upon the addition of tungsten oxide to titania up to 20wt%, the specific surface area and acidity of catalysts increased in proportion to the tungsten oxide content due to the interaction between tungsten oxide titania. Since the TiO2 stabilizes the tungsten oxide species, for the samples equal to or less than 20wt%, tungsten oxide was well dispersed on the surface of titania, but for samples containing 25wt% or above 25%, the triclinic phase of WO3 was observed at calcination temperature above 400℃. The catalytic actibities for 2-propanol dehydration and cumene dealkylation were correlated with the acidity of catalysts measured by ammonia chemisorption method.
[References]
  1. Adeeva V, deHaan JW, Janchen J, Lei GD, Schunemann V, vandeVen LJM, Sachtler WMN, vanSanten RA, J. Catal., 151(2), 364, 1995
  2. Alemany LJ, Berti F, Busca G, Ramis G, Robba D, Toledo GP, Trombetta M, Appl. Catal. B: Environ., 10(4), 299, 1996
  3. Arata K, Adv. Catal., 37, 165, 1990
  4. Basrur AG, Parwardham SR, Vyas SN, J. Catal., 127, 86, 1991
  5. Chan SS, Wachs IE, Murrell LL, J. Catal., 90, 150, 1984
  6. Cheung TK, d'Itri JL, Lange FC, Gates BC, Catal. Lett., 31(2-3), 153, 1995
  7. DeCanio SJ, Sohn JR, Fritz PO, J. Catal., 101, 132, 1986
  8. Ebitani K, Konish J, Hattori H, J. Catal., 130, 257, 1991
  9. Engweiler J, Harf J, Baiker A, J. Catal., 159(2), 259, 1996
  10. Figueras F, Coq B, Walter C, Carriat JY, J. Catal., 169(1), 103, 1997
  11. Guitierrez-Alejandre A, Ramirez J, Busca G, Langmuir, 14(3), 630, 1998
  12. Hino M, Arata K, J. Chem. Soc.-Chem. Commun., 1259, 1988
  13. Horsley JA, Wachs IE, Brown JM, Via GH, Hardcastle FD, J. Phys. Chem., 91, 4014, 1987
  14. Hsu CY, Heimbuch CR, Armes CT, Gates BC, J. Chem. Soc.-Chem. Commun., 1645, 1992
  15. Keogh RA, Srinivasan R, Davis BH, J. Catal., 151(2), 292, 1995
  16. Lee JK, Rhee HK, Korean J. Chem. Eng., 14(6), 451, 1997
  17. Meijers S, Gielgens LH, Ponec V, J. Catal., 156(1), 147, 1995
  18. Satsuma A, Hattori A, Mizutani K, Furuta A, Niyamoto A, Hattori T, Murakami Y, J. Phys. Chem., 92, 6052, 1988
  19. Sohn JR, Cho SG, Pae YI, Hayashi S, J. Catal., 159(1), 170, 1996
  20. Sohn JR, Jang HJ, Kim HW, Korean J. Chem. Eng., 7(1), 7, 1990
  21. Sohn JR, Ozaki A, J. Catal., 61, 29, 1980
  22. Sohn JR, Park MY, Langmuir, 14(21), 6140, 1998
  23. Sohn JR, Ryu SG, Langmuir, 9, 126, 1993
  24. Tanabe K, Misono M, Ono Y, Hattori J, "New Solid Acids and Bases," Elsevier Science, Amsterdam, 1989
  25. Vaudagna SR, Conelli RA, Canavese SA, Figoli NS, J. Catal., 169(1), 389, 1997
  26. Vuurman MA, Wachs IE, Hirt AM, J. Phys. Chem., 95, 9928, 1991
  27. Wachs IE, Chersich CC, Hardenbergh JH, Appl. Catal., 13, 335, 1985