Issue
Korean Journal of Chemical Engineering,
Vol.29, No.3, 377-383, 2012
Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth
Transition metal (Fe, V and W)-doped TiO2 was synthesized via the solvothermal technique and immobilized onto fiberglass cloth (FGC) for uses in photocatalytic decomposition of gaseous volatile organic compounds--benzene, toluene, ethylbenzene and xylene (BTEX)--under visible light. Results were compared to that of the standard commercial pure TiO2 (P25) coated FGC. All doped samples exhibit higher visible light catalytic activity than the pure TiO2. The V-doped sample shows the highest photocatalytic activity followed by the W- and Fe-doped samples. The UV-Vis diffuse reflectance spectra reveal that the V-doped sample has the highest visible light absorption followed by the W- and Fe-doped samples. The X-ray diffraction (XRD) patterns indicate that all doped samples contain both anatase and rutile phases with the majority (>80%) being anatase. No new peaks associated with dopant oxides can be observed, suggesting that the transition metal (TM) dopants are well mixed into the TiO2 lattice, or are below the detection limit of the XRD. The X-ray absorption near-edge structure spectra of the Ti K-edge transition indicate that most Ti ions are in a tetravalent state with octahedral coordination, but with increased lattice distortion from Fe- to V- and W-doped samples. Our results show that the TM-doped TiO2 were successfully synthesized and immobilized onto flexible fiberglass cloth suitable for treatment of gaseous organic pollutants under visible light.
[References]
  1. Wang S, Ang HM, Tade MO, Environ. Int., 33, 694, 2007
  2. Collins C, Laturnus F, Nepovim A, Environ. Sci. Pollut. Res. Int., 9, 86, 2002
  3. Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64, 2008
  4. Lee BY, Park SH, Lee SC, Kang M, Park CH, Choung SJ, Korean J. Chem. Eng., 20(5), 812, 2003
  5. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M, Appl. Catal. A: Gen., 265(1), 115, 2004
  6. Carp O, Huisman CL, Reller A, Prog. Solid State Chem., 32, 33, 2004
  7. Shannon RD, Acta Crystallogr. A., 32, 751, 1976
  8. Anpo M, Dohshi S, Kitano M, Hu Y, Takeuchi M, Matsuoke M, Annu. Rev. Mater. Res., 35, 1, 2005
  9. Ao CH, Lee SC, Appl. Catal. B: Environ., 44(3), 191, 2003
  10. Ku Y, Ma CM, Shen YS, Appl. Catal. B: Environ., 34(3), 181, 2001
  11. Dong Y, Bai Z, Liu R, Wang X, Yan H, Zhu T, Environ. Technol., 27, 705, 2006
  12. You YS, Chung KH, Kim JH, Seo G, Korean J. Chem. Eng., 18(6), 924, 2001
  13. Wantala K, Laokiat L, Khemthong P, Grisdanurak N, Fukaya K, J. Taiwan Inst. Chem. Eng., 41, 612, 2010
  14. Khemthong P, Klysubun W, Prayoonpokarach S, Wittayakun J, Mater. Chem. Phys., 121(1-2), 131, 2010
  15. Ravel B, Newville M, J. Synchrotron Rad., 12, 537, 2005
  16. Farges F, Brown GE, Rehr JJ, Phys. Rev. B., 56, 1809, 1997
  17. Ohtani B, Prieto-Mahaney OO, Abe DLR, J. Photochem.Photobiol. A., 216, 179, 2010
  18. Wang CY, Bottcher C, Bahnemann DW, Dohrmann JK, J.Mater. Chem., 13, 2322, 2003
  19. Choi J, Park H, Hoffmann MR, J. Phys. Chem. C., 114, 783, 2010
  20. Fujishima A, Zhang X, C.R. Chimie., 9, 750, 2006
  21. Wu ZY, Ouvrard G, Gressier P, Natoli CR, Phys. Rev. B., 55, 10382, 1997
  22. Zhou JK, Takeuchi M, Ray AK, Anpo M, Zhao XS, J. Colloid Interface Sci., 311(2), 497, 2007
  23. Lee BI, Kaewgun S, Kim W, Choi W, Lee JS, Kim E, J.Renewable Sustainable Energy., 1, 23101, 2009
  24. Zhang YL, Wei S, Zhang HY, Liu S, Nawaz F, Xiao FS, J. Colloid Interface Sci., 339(2), 434, 2009
  25. Kanchanatip E, Grisdanurak N, Thongruang R, Neramittagapong A, Reac. Kinet. Mech. Cat., 103, 227, 2011
  26. Paola AD, Ikeda S, Marci G, Ohtani B, Palmisano L, Int. J.Photoenergy., 3, 171, 2001
  27. National Institute of Standards and Technology Chemistry Web-Book (2010). http://webbook.nist.gov/chemistry/. Accessed 12 January 2011.