Issue
Korean Journal of Chemical Engineering,
Vol.29, No.3, 304-309, 2012
Intrinsic kinetics of the Fischer-Tropsch synthesis over an impregnated cobalt-potassium catalyst
The optimal amount of 15 wt%Co/10 wt%K/Al2O3 catalyst was prepared using the impregnation technique in order to study the kinetics of the Fischer-Tropsch synthesis. The rate of synthesis was measured in a fixed-bed micro reactor with H2/CO feed ratio of 1-3 and space velocity in the range of 2,700-5,200 h^(-1) under reactor pressure of 8 bar and a temperature range of 210-240℃ . The experimental data were best fitted by a Langmuir-Hinshelwood-Hougen-Watson (LHHW) approach rate in the form of -rCO=(k2K1PCOPH2)/(1+K1PCO). Furthermore, the data were fitted fairly well by a power law equation in the form of -rCO=kPCO 1.32PH21.42. The activation energies for LHHW approach model and power law equation were obtained as 138.5 kJ/mol and 87.39 kJ/mol, respectively.
[References]
  1. van der Laan GP, Beenackers AACM, Appl. Catal. A: Gen., 193(1-2), 39, 2000
  2. Song HS, Ramkrishna D, Trinh S, Wright H, Korean J. Chem. Eng., 21(2), 308, 2004
  3. Rofer-Depoorter CK, Chem. Rev., 81, 447, 1981
  4. Kim CU, Kim YS, Chae HJ, Jeong KE, Jeong SY, Jun KW, Lee KY, Korean J. Chem. Eng., 27(3), 777, 2010
  5. Kim YH, Hwang DY, Song SH, Lee SB, Park ED, Park MJ, Korean J. Chem. Eng., 26(6), 1591, 2009
  6. Pour AN, Zamani Y, Tavasoli A, Shahri SMK, Taheri SA, Fuel., 87, 2004, 2008
  7. Jeon JK, Kim CJ, Park YK, Ihm SK, Korean J. Chem. Eng., 21(2), 365, 2004
  8. Pour AN, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA, Appl. Catal. A: Gen., 348(2), 201, 2008
  9. Yang Y, Xiang HW, Xu YY, Bai L, Li YW, Appl. Catal. A: Gen., 266(2), 181, 2004
  10. Raje AP, O'Brien RJ, Davis BH, J. Catal., 180(1), 36, 1998
  11. Iglesia E, Reyes SC, Soled SL, in: Computer-Aided Design of Catalysts, E. R. Becker, et al. Eds., Dekker, New York, 1993
  12. Sarup B, Wojciechowski BW, Can. J. Chem. Eng., 74, 62, 1989
  13. Yates IC, Sattereld CN, Energy and Fuels., 5, 168, 1991
  14. Yang CH, Massoth FE, Oblad AG, Adv. Chem. Ser., 178, 35, 1979
  15. Anderson RB, in: Catalysis, Emmett PH Ed., Reinhold, New York, 1956
  16. Brotz W, Z. Elektrochem., 5, 301, 1949
  17. Botes FG, van Dyk B, McGregor C, Ind. Eng. Chem. Res., 48(23), 10439, 2009
  18. Irankhah A, Haghtalab A, Farahani EV, Sadaghianizadeh K, J. Nat. Gas Chem., 16, 115, 2007
  19. Zennaro R, Tagliabue M, Bartholomew CH, Catal. Today, 58(4), 309, 2000
  20. Herington EFG, Chem. Ind., 65, 346, 1946
  21. Lox ES, Marin GB, De Graeve E, Bussier P, Appl. Catal. A., 40, 197, 1988
  22. Van der Laan GP, Beenackers AACM, Catal. Rev.-Sci. Eng., 41(3-4), 255, 1999
  23. Wang YN, Ma WP, Lu YJ, Yang J, Xu YY, Xiang HW, Zha YL, Zhang BJ, Fuel., 82, 195, 2003
  24. Mears DE, in: Chemical Reaction Engineering II, H. M. Hulburt Ed., ACS Monograph, Washington, 1974
  25. Mollavali M, Yaripour F, Atashi H, Sahebdelfar S, Ind. Eng. Chem. Res., 47(9), 3265, 2008
  26. Ponec V, Van Barnevald WA, Ind. Eng. Chem. Prod. Res. Dev., 18, 268, 1979
  27. Christman K, Scober O, Ertl G, Neumann M, J. Chem. Phys., 60, 4719, 1974