Issue
Korean Journal of Chemical Engineering,
Vol.29, No.2, 243-248, 2012
Morphology-controlled Synthesis of CuO nano- and microparticles using microwave irradiation
Microwave irradiation was used to obtain a variety of CuO crystal morphologies, including leaf-like, dandelion-like, and hollow structures. The morphology of the CuO crystals was controlled by varying the alkali source (NaOH, hexamethylenetetramine, ammonia, or urea) and heating at 95 ℃ for 1 hr. The X-ray diffraction patterns of as-prepared CuO crystals were consistent with high quality crystals with a monoclinic crystal structure. Field emission scanning electron microscopy (FE-SEM) and tunneling electron microscopy (TEM) images of CuO crystals revealed that the leaf-like CuO crystals had an average length of 950 nm and width of 450 nm, the small leaf-like CuO crystals had an average length of 450 nm and width of 200 nm, the dandelion-like CuO structures had an average diameter of 2 m, and the hollow CuO structures had an average diameter 2 m. Possible mechanisms for structure formation during the shape-selective CuO synthesis were proposed based on these results.
[References]
  1. Musa AO, Akomolafe T, Carter MJ, Sol. Energy Mater. Sol. Cells, 51(3), 305, 1998
  2. Reitz JB, Solomon EI, J. Am. Chem. Soc., 120(44), 11467, 1998
  3. Baik NS, Sakai G, Miura N, Yamazoe N, J. Am. Ceram. Soc., 83(12), 2983, 2000
  4. Chowdhuri A, Gupta V, Sreenivas K, Appl. Phys. Lett., 84, 1180, 2004
  5. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, J. Am. Ceram. Soc., 80, 3157, 1997
  6. MacDonald AH, Nature., 414, 409, 2001
  7. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Nature., 407, 496, 2000
  8. Hsieh CT, Chen JM, Lin HH, Shih HC, Appl. Phys. Lett., 83, 3383, 2003
  9. Forsyth JB, Brown PJ, Wanklyn BM, J. Phys. C: Solid State Phys., 21, 2917, 1988
  10. Yang BX, Thurston TR, Tranquada JM, Shirane G, Phys. Rev. B., 39, 4343, 1989
  11. Sukhorukov YP, Loshkareva NN, Samokhvalov AA, Naumov SV, Moskvin AS, Ovchinnikov AS, J. Magn. Magn. Mater., 183, 356, 1998
  12. Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW, Phys. Rev. Lett., 58, 908, 1987
  13. Zheng XG, Xu CN, Tomokiyo Y, Tanaka ET, Yamada H, Soejima Y, Phys. Rev. Lett., 85, 5170, 2000
  14. Park JC, Kim J, Kwon H, Song H, Adv. Mater., 21(7), 803, 2009
  15. Xiao HM, Fu SY, Zhu LP, Li YQ, Yang G, Eur. J. Inorg.Chem., 1966, 2007
  16. Du GH, Van Tendeloo G, Chem. Phys. Lett., 393(1-3), 64, 2004
  17. Zhang YG, Wang ST, Li XB, Chen LY, Qian YT, Zhang ZD, J. Cryst. Growth, 291(1), 196, 2006
  18. Li S, Zhang H, Ji Y, Yang D, Nanotechnology., 15, 1428, 2004
  19. Liu Y, Chu Y, Zhuo Y, Li M, Li L, Dong L, Cryst. Growth Design., 7, 3, 2007
  20. Zhang M, Xu X, Zhang M, Mater. Lett., 62, 385, 2008
  21. Zhang Y, Wing S, Wang X, Cui T, Cui W, Zhang Y, Zhang Z, Eur. J. Inorg. Chem., 168, 2009
  22. Li F, Tao K, Wentuan BA, Li DC, Li Z, Huang XT, Appl. Surf. Sci., 255(12), 6279, 2009
  23. Wang SQ, Zhang JY, Chen CH, Script. Mater., 57, 337, 2007
  24. Hu Y, Huang X, Wang K, Liu J, Jiang J, Ding R, Ji X, Li X, J. Solid State Chem., 183, 662, 2010
  25. Zhu J, Qian X, J. Solid State Chem., 183, 1632, 2010
  26. Jia W, Reitz E, Shimpi P, Rodriguez EG, Gao PX, Lei Y, Mater. Res. Bull., 44, 1681, 2009
  27. Chen JT, Zhang F, Wang J, Zhang GA, Miao BB, Fan XY, Yan D, Yan PX, J. Alloys and Compounds., 454, 268, 2009
  28. Barreca D, Gasparotto A, Maccato C, Tondello E, Lebedev OI, Tendeloo GV, Cryst. Growth Design., 9, 2471, 2009
  29. Kaur M, Muthe KP, Despande SK, Choudhury S, Singh JB, Verma N, Gupta SK, Yakhmi JV, J. Cryst. Growth, 289(2), 670, 2006
  30. Zhang XJ, Zhang DG, Ni XM, Zheng HG, Solid-State Electron., 52(2), 245, 2008
  31. Lu CH, Qi LM, Yang JH, Zhang DY, Wu NZ, Ma JM, J. Phys. Chem. B, 108(46), 17825, 2004
  32. Kumar RV, Elgamiel R, Diamant Y, Gedanken A, Norwig J, Langmuir, 17(5), 1406, 2001
  33. Xiao HM, Fu SY, Zhu LP, Li YQ, Yang G, Eur. J. Inorg.Chem., 1966, 2007
  34. Cho S, Jung SH, Lee KH, J. Phys. Chem. C., 112, 12769, 2008
  35. Loupy A, Perreux L, Microwaves in organic synthesis, Wiley-VCH, Weinheim, Germany, 2002
  36. Thostenson ET, Chou TW, Composites: Part A., 30, 1055, 1999
  37. Das S, Mukhopadhyay AK, Datta S, Basu D, Bull. Mater.Sci., 32, 1, 2009
  38. Wang S, Xu H, Qian L, Jia X, Wang J, Liu Y, Tang W, J.Solid State Chem., 182, 1088, 2009
  39. Yang SY, Wang CF, Chen L, Chen S, Mater. Chem. Phys., 120(2-3), 296, 2010
  40. Zhang Y, Wang S, Qian Y, Zhang Z, Solid State Sci., 8, 462, 2006
  41. Gao S, Yang S, Shu J, Zhang S, Li Z, Jiang K, J. Phys. Chem.C., 112, 19324, 2008
  42. Yin YD, Lu Y, Gates B, Xia YN, Chem. Mater., 13, 1146, 2001
  43. Ohmori M, Matijevic E, J. Colloid Interface Sci., 150, 594, 1992
  44. Du GH, Van Tendeloo G, Chem. Phys. Lett., 393(1-3), 64, 2004
  45. Lu CH, Qi LM, Yang JH, Zhang DY, Wu NZ, Ma JM, J. Phys. Chem. B, 108(46), 17825, 2004
  46. Zhang ZP, Sun HP, Shao XQ, Li DF, Yu HD, Han MY, Adv. Mater., 17(1), 42, 2005
  47. Dreyfors JM, Jones SB, Sayed Y, Am. Ind. Hyg. Assoc. J., 50, 579, 1989
  48. Trevani LN, Roberts JC, Tremaine PR, J. Solution Chem., 30, 585, 2001
  49. Norkus E, Vaskelis A, Polyhedron., 13, 3041, 1994
  50. Sahu JN, Mahalik KK, Patwardhan AV, Meikap BC, J. Hazard. Mater., 164(2-3), 659, 2009
  51. Mavis B, Akinc M, J. Am. Ceram. Soc., 89(2), 471, 2006
  52. Henrist C, Traina K, Hubert C, Toussaint G, Rulmont A, Cloots R, J. Cryst. Growth, 254(1-2), 176, 2003