Issue
Korean Journal of Chemical Engineering,
Vol.29, No.2, 235-242, 2012
Oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane after surface modification
The effect of minor surface modification on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane was evaluated in the temperature region from 700 to 850℃ . Oxygen permeation experiments were conducted according to membrane thickness (1.0mm and 1.6 mm) and oxygen partial pressure (0.21, 0.42, and 0.63 atm) in the absence and in the presence of carbon dioxide (300 and 500 ppm). The oxygen permeation flux of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane increased with increasing temperature and decreasing membrane thickness. The oxygen permeation flux through the membrane of 1.0 mm thickness with Ba0.5Sr0.5Co0.8Fe0.2O3-δ-modified surface was ca. 1.23 ml/cm2·min at 850 ℃ under air feeding condition. It was found that the Ba0.5Sr0.5Co0.8Fe0.2O3-δ-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane has better oxygen permeation flux than the pristine Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane. In summary, it has been demonstrated that the surface morphology is an important factor in determining the oxygen permeation fluxes through Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane under mixed-control conditions.
[References]
  1. Steel BCH, Mater. Sci. Eng., B., 13, 79, 1992
  2. Hwang ST, Korean J. Chem. Eng., 18(6), 775, 2001
  3. Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX, J. Membr. Sci., 172(1-2), 177, 2000
  4. Wang HH, Cong Y, Yang WS, J. Membr. Sci., 210(2), 259, 2002
  5. Wang HH, Wang R, Liang DT, Yang WS, J. Membr. Sci., 243(1-2), 405, 2004
  6. Adler SB, Chem. Rev., 104(10), 4791, 2004
  7. Shao Z, Haile SM, Nature., 431, 170, 2004
  8. Magnone E, J. Fuel Cell Sci. Technol., 7, 064001, 2001
  9. Ge L, Zhou W, Ran R, Liu S, Shao Z, Jin W, Xu N, J. Membr. Sci., 306(1-2), 318, 2007
  10. Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, da Costa JCD, J. Membr. Sci., 320(1-2), 13, 2008
  11. Moydinov RY, Popova MN, Kaul AR, Doklady Chemistry., 402, 88, 2005
  12. Bouwmeester HJ, Kruidhof H, Burggraaf AJ, Solid State Ion., 72, 185, 1994
  13. Ftikos C, Carter S, Steele BCH, J. Eur. Ceram. Soc., 12, 79, 1993
  14. Bucher E, Egger A, Ried P, Sitte W, Holtappels P, Solid State Ion., 179(21-26), 1032, 2008
  15. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH, Solid State Ionics., 53-56, 597, 1992
  16. Girdauskaite E, Ullmann H, Vashook VV, Guth U, Caraman GB, Bucher E, Sitte W, Solid State Ion., 179(11-12), 385, 2008
  17. Ghadimi A, Alaee MA, Behrouzifar A, Asadi AA, Mohammadi T, Desalination, DOI:10.1016/j.desal.2010.11.022, 2010
  18. Hong WK, Choi GM, J. Membr. Sci., 346(2), 353, 2010
  19. Chen Z, Ran R, Shao Z, Yu H, Diniz JC da Costa, Liu S, Ceram. Int., 35, 2455, 2009
  20. Jiang Q, Nordheden KJ, Stagg-Williams SM, J. Membr. Sci., DOI:10.1016/j.memsci.2010.11.073, 2010
  21. Energy Procedia., Park JH, Kim JP, Son SH, Greenhouse Gas Control Technologies 9, Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), 16-20 November 2008, Washington DC, USA, 1, 369, 2009
  22. Magnone E, Miyayama M, Traversa E, J. Electrochem. Soc., 156(9), B1059, 2009
  23. Lu H, Cong Y, Yang WS, Solid State Ion., 177(5-6), 595, 2006
  24. Shen Z, Lu P, Yan G, Hu X, Mater. Lett., 64, 980, 2010
  25. Zeng PY, Chen ZH, Zhou W, Gu HX, Shao ZP, Liu SM, J. Membr. Sci., 291(1-2), 148, 2007
  26. Engels S, Beggel F, Modigell M, Stadler H, J. Membr. Sci., 359, 93, 2010
  27. Yang Z, Harvey AS, Gauckler LJ, Scr. Mater., 61, 1083, 2009
  28. Nomura K, Homonnay Z, Juhasz G, Vertes A, Donen H, Sawada TTS, Hyperfine Interact., 139-140, 297, 2002
  29. Yang Q, Lin YS, Ind. Eng. Chem. Res., 45(18), 6302, 2006