Issue
Korean Journal of Chemical Engineering,
Vol.28, No.12, 2262-2274, 2011
Characterization of products from slow pyrolysis of palm kernel cake and cassava pulp residue
Slow pyrolysis studies of palm kernel cake (PKC) and cassava pulp residue (CPR) were conducted in a fixed-bed reactor. Maximum liquid yield (54.3 wt%) was obtained from PKC pyrolysis at 700 ℃, heating rate of 20 ℃/min, N2 gas flow rate of 200 cm3/min and particle size of 2.03 mm. Fuel properties of bi-oils were in following ranges: density, 1.01-1.16 g/cm3; pH, 2.8-5.6; flash point, 74-110 ℃ and heating value, 15MJ/kg for CPR oil and 40 MJ/kg for PKC oil. PKC oil gave main contents of n-C8-C18 carboxylic acids, phenols, and esters, whereas CPR oil gave the highest amount of methanol soluble fraction consisting of polar and non-volatile compounds. On gas compositions, CPR pyrolysis gave the highest yield of syngas produced, while PKC pyrolysis offered the highest content of CO2. Pyrolysis chars possessed high calorific values in range from 29-35MJ/kg with PKC char showing a characteristic of reasonably high porosity material.
[References]
  1. Czernik S, Bridgwater AV, Energy Fuels, 18(2), 590, 2004
  2. Liu Q, Wang S, Wang K, Luo Z, Cen K, Korean J. Chem. Eng., 26(2), 548, 2009
  3. Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73, 2010
  4. Bridgwater AV, Chem. Eng. J., 91, 81, 2003
  5. Yaman S, Energy Conv. Manag., 45(5), 651, 2004
  6. Dynamotive Energy Systems Corporation (2004), What is bio-oil [On-line], http://www.dynamotive.com/biooil/whatisbiooil.html.
  7. Choi HS, Choi YS, Park HC, Korean J. Chem. Eng., 27(4), 1164, 2010
  8. Rodjeen SN, Mekasut LS, Kuchontara PP, Piumsomboon PP, Korean J. Chem. Eng., 23(2), 216, 2006
  9. Mohan D, Pittman CU, Steele PH, Energy Fuels, 20(3), 848, 2006
  10. Nugranad N, Pyrolysis of biomass, Ph.D. Dissertation, University of Leeds, Leeds, 1997
  11. Onay O, Kockar OM, Energy., 28, 2417, 2003
  12. Branca C, Giudicianni P, Di Blasi C, Ind. Eng. Chem. Res., 42(14), 3190, 2003
  13. Yang H, Yan R, Chen H, Lee DH, Zheng C, Fuel., 86, 1781, 2007
  14. Office of Agricultural Economics (2007), Cassava [On-line], www.oae.go.th.
  15. Integrated cassava project (2007), Cassava starch production [Online], http://www. cassavabiz.org.
  16. Wattanachaisaereekul S, Animal feed from fermented cassava waste, M.S. Thesis, Kasetsart University, Thailand, 2001
  17. Office of Agricultural Economics (2007), Palm oil [On-line], www.oae.go.th.
  18. Antal MJ, in Advances in solar energy, Boer KW, Duffie JA Eds., American Solar Energy Society, Boulder, CO, 1983
  19. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel., 82, 1949, 2003
  20. Demirba A, J. Anal. Appl. Pyrolysis., 76, 285, 2006
  21. Putun AE, Kockar OM, Yorgun S, Gercel HF, Andresen J, Snape CE, Putun E, Fuel Process. Technol., 46(1), 49, 1996
  22. Putun AE, Ozcan A, Gercel HF, Putun E, Fuel., 80, 1371, 2001
  23. Yorgun S, Sensoz S, Kockar OM, J. Anal. Appl. Pyrolysis., 60, 1, 2001
  24. Onay O, Kockar OM, Biomass Bioenerg., 26(3), 289, 2004
  25. Ozbay N, Putun AE, Uzun BB, Putun E, Renew. Energy., 24, 615, 2001
  26. Guo J, Lua AC, Biomass Bioenerg., 20(3), 223, 2001
  27. Putun AE, Ferdi Gercel H, Kockar OM, Ege O, Snape CE, Putun E, Fuel., 75, 1307, 1996
  28. Tsai WT, Lee MK, Chang YM, J. Anal. Appl. Pyrolysis., 76, 230, 2006
  29. Karaosmanoglu F, Tetik E, Gollu E, Fuel Process. Technol., 59(1), 1, 1999
  30. Islam MN, Zailani R, Ani FN, Renew. Energy, 17(1), 73, 1999
  31. Zhang Q, Chang J, Wang TJ, Xu Y, Energy Conv. Manag., 48(1), 87, 2007
  32. Dynamotive Energy Systems Corporation (2009), The evaluation of energy: alternative fuels from cellulose for a better world, [Online], www.dynamotive.com.
  33. Oasmaa A, Czernik S, Energy Fuels, 13(4), 914, 1999
  34. Xu JM, Jiang JC, Sun YJ, Lu YJ, Biomass Bioenerg., 32(11), 1056, 2008
  35. Ac kgoz C, Onay O, Kockar OM, J. Anal. Appl. Pyrolysis., 71, 417, 2004
  36. Putun AE, Ozcan A, Putun E, J. Anal. Appl. Pyrolysis., 52, 3, 1999
  37. Kossiakoff A, Rice FO, J. Am. Chem. Soc., 65, 590, 1943
  38. Tsai WT, Mi HH, Chang YM, Yang SY, Chang JH, Bioresour. Technol., 98(5), 1133, 2007
  39. Putun E, Ate F, Putun AE, Fuel., 87, 815, 2008
  40. Demirbas A, Energy Conv. Manag., 41(6), 633, 2000
  41. Lemeune S (2005), Le bios [Online], http://www.geocities.com/Paris/LeftBank/5810/bois.html.
  42. Wang D, Czernik S, Montane D, Mann M, Chornet E, Ind. Eng. Chem. Res., 36(5), 1507, 1997
  43. Srinorakutara T, Kaewvimol L, Saengow L, J. Sci. Res. Chula. Univ., 31, 77, 2006
  44. Biomass Technology Group (2003), Bio-oil Applications [Online], http://www.btgworld.com/technologies/bio-oil-applications.html.
  45. Thomas S, Wornat MJ, Fuel., 87, 768, 2008
  46. Chum HL, Kreibich RE, US Patent, 5,091,499, 1992
  47. Uzun BB, Putun AE, Putun E, J. Anal. Appl. Pyrolysis., 79, 147, 2007
  48. Jorjani E, Hower JC, Chelgani SC, Shirazi MA, Mesroghli S, Fuel., 87, 707, 2008
  49. Bansal RC, Donnet JB, Stoeckli F, Active carbon, Marcel Dekker, New York, 1988
  50. Li SG, Xu SP, Liu SQ, Yang C, Lu QH, Fuel Process. Technol., 85(8-10), 1201, 2004
  51. Zanzi R, Sjostrom K, Bjornbom E, Biomass Bioenerg., 23(5), 357, 2002
  52. Dai XW, Wu CZ, Li HB, Chen Y, Energy Fuels, 14(3), 552, 2000
  53. Panigrahi S, Chaudhari ST, Bakhshi NN, Dalai AK, Energy Fuels, 16(6), 1392, 2002
  54. Yang HP, Yan R, Chen HP, Lee DH, Liang DT, Zheng CG, Fuel Process. Technol., 87(10), 935, 2006