Issue
Korean Journal of Chemical Engineering,
Vol.28, No.12, 2344-2350, 2011
Preparation and characterization of activated carbons for SO2 adsorption from Taixi anthracite by physical activation with steam
Taixi anthracite was used as a precursor to prepare activated carbons (AC) for SO2 adsorption from flue gas. In this work the activated carbons were prepared by physical activation with steam. Specifically, the effects of activation temperature and burn-off degree on the physico-chemical properties of the resulting AC samples were comparatively studied. The different types of pore volumes, pore size distributions and surface chemistries of the activated carbons on the SO2 adsorption were also analyzed. The results show that the increasing burn-off leads to samples with continuous evolution of all types of pores except ultramicropore. The ultramicropore volume increases to a maximum of 0.169 cm3/g at around 50% burn-off and then decreases for 850 ℃ activation. At higher activation temperature, the micropore volume decreases and the mesopore structure develops to a certain extent. For all the resulting AC samples, the quantities of the basic surface sites always appear much higher than the amount of the acidic sites. The activated carbon prepared with higher micropore volume, smaller median pore diameter and higher quantities of the basic surface sites represents better SO2 sorption property.
[References]
  1. Rau JY, Tseng HH, Chiang BC, Wey MY, Lin MD, Fuel., 89, 732, 2010
  2. Li ZQ, Fan SB, Liu GK, Yang XH, Chen ZC, Su W, Energy Fuels., 24, 38, 2010
  3. Li T, Zhuo Y, Lei J, Xu X, Korean J. Chem. Eng., 24(6), 1113, 2007
  4. Wang Y, Huang Z, Liu Z, Liu Q, Carbon., 42, 445, 2004
  5. Lopez D, Buitrago R, Sepnlveda-Escribano A, Rodriguez-Reinoso F, Mondragon FJ, Phys. Chem. C., 112, 15335, 2008
  6. Raymundo-Pioero E, Cazorla-Amoros D, Linares-Solano A, Carbon., 39, 231, 2001
  7. Davini P, Carbon., 39, 1387, 2000
  8. Lizzio AA, DeBarr JA, Fuel., 75, 1515, 1996
  9. Kang HY, Park SS, Rim YS, Korean J. Chem. Eng., 23(6), 948, 2006
  10. Chattopadhyaya G, Macdonald DG, Bakhshi NN, Soltan JS, Dalai AK, Fuel Process. Technol., 87(11), 997, 2006
  11. Ngernyen Y, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 23(6), 1046, 2006
  12. Lyubchik SB, Benoit R, Beguin F, Carbon., 40, 1287, 2001
  13. Belhachemi M, Rios RVRA, Addoun F, Silvestre-Albero J, Sepulveda-Escribano A, Rodriguez-Reinoso FJ, Anal. Appl. Pyrolysis., 86, 168, 2009
  14. Pietrzak R, Fuel., 88, 1871, 2009
  15. Izquierdo MT, Rubio B, Mayoral C, Andres JM, Fuel., 82, 147, 2003
  16. Lizzio AA, Debarr JA, Energy Fuels, 11(2), 284, 1997
  17. Daley MA, Magnum CL, DeBarr JA, Riha S, Lizzio AA, Donnals GL, Economy J, Carbon., 35, 411, 1997
  18. Rodriguez-Reinoso F, Molina-Sabio M, Gonzalez MT, Carbon., 33, 15, 1995
  19. Pastor-Villegas J, Duran-Valle CJ, Carbon., 40, 397, 2002
  20. Lopez D, Buitrago R, Sepnlveda-Escribano A, Rodriguez-Reinoso F, Mondragon FJ, Phys. Chem. C., 111, 1417, 2007
  21. Mangun CL, DeBarr JA, Economy J, Carbon., 39, 1689, 2001
  22. Carabineiro SAC, Ramos AM, Vital J, Loureiro JM, Orfao JJM, Fonseca IM, Catal. Today, 78(1-4), 203, 2003
  23. Boehm HP, Carbon., 32, 759, 1994
  24. Seredych M, Deliyanni E, Bandosz TJ, Fuel., 89, 1499, 2010