Issue
Korean Journal of Chemical Engineering,
Vol.28, No.12, 2230-2235, 2011
Turbulent convective heat transfer of nanofluids through a square channel
This paper reports the results of experimental investigation on the heat transfer performance of Al2O3/H2O and TiO2/H2O nanofluids through square channel with constant wall temperature boundary condition. The flow regime through channel is turbulent. The nanofluids used in this research are Al2O3/H2O and TiO2/H2O with different nanoparticle concentrations. Based on the results of the present investigation, for specific Peclet number, convective heat transfer coefficient and Nusselt number of nanofluids are higher than those of distilled water. The enhancement increases with increasing nanoparticle concentration. The results also reveal that the convective heat transfer coefficient for Al2O3/H2O nanofluid is relatively the same as that of TiO2/H2O nanofluid.
[References]
  1. Choi SUS, in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 231, 99, 1995
  2. Lee S, Choi SUS, Li S, Eastman JA, J. Heat Transf., 121, 280, 1999
  3. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ, Appl. Phys. Lett., 78(6), 718, 2001
  4. Xiang Q, Wang XQ, Mujumdar AS, Brazilian J. Chem. Eng., 25, 631, 2008
  5. Santra AK, Sen S, Chakraborty N, Int. J. Therm. Sci., 48, 391, 2009
  6. Shahi M, Mahmoodi AH, Talebi F, Int. J. Heat Mass Transf., 2011
  7. Li YJ, Zhou JE, Tung S, Schneider E, Xi SQ, Powder Technol., 196(2), 89, 2009
  8. Pak BC, Cho YI, Exp. Heat Transf., 11(2), 151, 1998
  9. Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, DiMelfi RJ, Material Sci. Forum., 312, 629, 1999
  10. Xuan Y, Li Q, J. Heat Transf., 125(1), 151, 2003
  11. Zhou DW, Int. J. Heat Mass Transf., 47(20), 2004
  12. Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G, Int. J. Heat Mass Transf., 48, 2005
  13. Zeinali Heris S, Gh S, Etemad, Nasr Esfahany M, Int. Commun. Heat Mass Transf., 33, 526, 2006
  14. Ding Y, Chen H, He Y, Lapkin A, Yeganeh M, Siller L, Butenko YV, Adv. Powder Technol., 18(6), 2007
  15. Williams W, Buongiorno J, Hu LW, ASME J. Heat Transf., 130(1), 42412, 2008
  16. Duangthongsuk W, Wongwises S, Int. J. Heat Mass Transf., 52(71), 2009
  17. Etemad SG, Farajollahi B, Hajipour M, Thibault J, Accepted for publication at J. Enhanced Heat Transf.
  18. Hojjat M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 27(5), 1391, 2010
  19. Vajjha RS, Das DK, Kulkarni DP, Int. J. Heat Mass Transf., 53(21-22), 4607, 2010
  20. Zamzamian A, Oskouie SN, Doosthoseini A, Joneidi A, Pazouki M, Exp. Therm. Fluid Sci., 35, 495, 2011
  21. Heris S, Esfahany M, Etemad SG, Int. J. Heat. Fluid Flow., 28(2), 203, 2007
  22. Maxwell JC, A treatise on electricity and magnetism, 2nd Ed., Clarendon Press, Oxford, U.K., 1881
  23. Zhou SQ, Ni R, Appl. Phys. Lett., 92, 93, 2008
  24. Izad M, Behzadmehr A, Jalali-Vahida D, Int. J. Therm. Sci., 48(11), 2119, 2009
  25. Einstein A, Annalen der Physik., 19(2), 289, 1906
  26. Dittus FW, Boelter LMK, Univ. Calif. Publ. Eng., 2(13), 443, 1930
  27. Mirmasoumi S, Behzadmehr A, Int. J. Heat. Fluid Flow., 29, 566, 2008