Issue
Korean Journal of Chemical Engineering,
Vol.28, No.10, 2012-2016, 2011
Pyrolysis properties and kinetics of mandarin peel
The thermal property of the pyrolysis reaction of mandarin peel was studied using thermogravimetric analysis (TGA). Thermogravimetric analyses with temperature increases of 10, 20 and 40℃ /min showed large weight losses within the temperature range 150-590℃. Differential thermogravimetric (DTG) analysis curves illustrated that the pyrolysis of mandarin peel was a multi-step process, consisting of water desorption, the decomposition of pectin, hemicellulose, cellulose and lignin, and devolatilization of the residual char. The apparent activation energies ranged between 119 and 406 kJ/mol, depending on the pyrolytic conversion. The pyrolysis products were analyzed, using pyrolyzergas chromatography/mass spectrometry (Py-GC/MS), to evaluate mandarin peel as a renewable source of valuable industrial chemicals. The pyrolysis products of mandarin peel contained high portions of methanol and acetic acid, as well as valuable compounds, such as limonene and vitamin E.
[References]
  1. Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73, 2010
  2. Choi HS, Choi YS, Park HC, Korean J. Chem. Eng., 27(4), 1164, 2010
  3. Othman MR, Park YH, Ngo TA, Kim SS, Kim J, Lee KS, Korean J. Chem. Eng., 27(1), 163, 2010
  4. Liu Q, Wang S, Wang K, Luo Z, Cen K, Korean J. Chem. Eng., 26, 548, 2010
  5. Jeon MJ, Choi SJ, Yoo KS, Ryu C, Park SH, Lee JM, Jeon JK, Park YK, Kim S, Korean J. Chem. Eng., 28(2), 497, 2011
  6. Yang SJ, JeJu Special Self-Governing Province Research Paper, 2007
  7. Heo HS, Park HJ, Dong JI, Park SH, Kim S, Suh DJ, Suh YW, Kim SS, Park YK, J. Ind. Eng. Chem., 16(1), 27, 2010
  8. Aguiar L, Marquez-Montesinos F, Gonzalo A, Sanchez JL, Arauzo J, J. Anal. Appl. Pyrol., 83, 124, 2008
  9. Miranda R, Bustos-Martinez D, Sosa Blanco C, Gutierrez Villarreal MH, Rodriguez Cantu ME, J. Anal. Appl. Pyrol., 86, 245, 2009
  10. Marin FR, Solar-Rivas C, Benavente-Carcia O, Castillo J, Perez-Alvarez JA, Food Chem., 100, 736, 2007
  11. Chen B, Chen Z, Chemosphere., 76, 127, 2009
  12. Vyazovkin S, Thermochim. Acta, 355(1-2), 155, 2000
  13. Brown ME, Introduction to thermal analysis: Techniques and applications, Kluwer Academic Publishers, 2001
  14. Kim SS, Agblevor FA, Waste Manage., 27, 135, 2007
  15. Kim SS, Chun BH, Kim SH, Chem. Eng. J., 93(3), 225, 2003
  16. Liou TH, Chang FW, Lo JJ, Ind. Eng. Chem. Res., 36(3), 568, 1997
  17. Friedman HL, J. Polym. Sci., 6, 183, 1963
  18. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel., 82, 1949, 2003
  19. Einhorn-Stoll U, Kunzek H, Food Hydrocolloids., 23, 40, 2009
  20. Fisher T, Hajalogol M, Waymack B, Kellogg D, J. Anal. Appl. Pyrol., 62, 331, 2002
  21. Yang H, Yan R, Chen H, Lee DH, Zheng C, Fuel., 86, 1781, 2007
  22. Mohan D, Pittman CU, Steele PH, Energy Fuels, 20(3), 848, 2006
  23. Sharma RK, Wooten JB, Baliga VL, Hajaligol MR, Fuel., 80, 1825, 2001
  24. Zhou S, Xu Y, Wang C, Tian Z, J. Anal. Appl. Pyrol., 91, 232, 2011
  25. Gullu D, Demirbas A, Energy Conv. Manag., 42(11), 1349, 2001
  26. Wang SR, Lia YF, Tan H, Luo ZY, Cen KF, J. Fuel Chem. Technol., 31, 317, 2003
  27. Izumi A, Kuroda K, Rapid Commun. Mass Spectrom., 11, 1709, 1997
  28. Demirbas A, Gullu D, Energy Educ. Sci., 1, 111, 1998