Issue
Korean Journal of Chemical Engineering,
Vol.28, No.9, 1956-1963, 2011
Experimental and model investigation on the mass balance of a dry circulating fluidized bed for flue gas desulfurization system
A moderate temperature dry circulating fluidized bed flue gas desulfurization (CFB-FGD) process was developed using rapidly hydrated sorbent. This technique has the advantages of low cost, no water consumption, and a valuable dry product CaSO4. To keep the system operation stable, a mass balance model, based on cell model considering flow state, particle abrasion, particle residence time, particle segregation and desulfurization processes, was built to predict the system state and optimize the operating condition. Experimental studies were conducted on a pilotscale CFB-FGD system with rapidly hydrated sorbent made from CFB circulating ash and lime (circulating ash sorbent) or coal fly ash and lime (coal fly ash sorbent). Calculated results were compared with experimental results and the relative error was less than 10%. The results indicated that feed sorbent mass, feed sorbent size, superficial gas velocity, particle abrasion coefficient and cyclone efficiency had significant influence on the mass balance of CFB system. The circulating ash sorbent was better than the coal fly ash sorbent, for providing higher desulfurization efficiency and being better for the CFB-FGD system to achieve mass balance.
[References]
  1. Soud H, IEA Coal Research., 18, 1995
  2. Sai JC, Wu SH, Xu R, Sun R, Zhao Y, Qin YK, Korean J. Chem. Eng., 24, 3, 2007
  3. Xu GW, Guo QM, Kaneko T, Kato K, Adv. Environ. Res., 4, 9, 2000
  4. Zaremba T, Mokrosz W, Hehlmann J, Szwalikowska A, Stapinski G, Korean J. Chem. Eng., 93, 2, 2008
  5. Matsushima N, Li Y, Nishioka M, Sadakata M, Qi HY, Xu XC, Environ. Sci. Technol., 38, 6867, 2004
  6. Hou B, Qi HY, You CF, Xu XC, Energy Fuels, 19(1), 73, 2005
  7. Zhang J, You CF, Qi HY, Chen CH, Xu XC, Environ. Sci. Technol., 40, 4300, 2006
  8. Zhang J, Zhao SW, You CF, Qi HY, Chen CH, Ind. Eng. Chem. Res., 46(16), 5340, 2007
  9. Li Y, You CF, Song CX, Environ. Sci. Technol., 44, 4692, 2010
  10. Yang HR, Yue GX, Wang Y, Lv JF, J. Eng. Thermal Energy Power., 20, 291, 2005
  11. Yang HR, Xiao XB, Wirsum M, Yue GX, Fett FN, Coal Convers., 25, 59, 2002
  12. Tsuo YP, Gidaspow D, AIChE J., 36, 885, 1990
  13. Sun B, Gidaspow D, Ind. Eng. Chem. Res., 38(3), 787, 1999
  14. Ni WD, Li Z, Xu XD, Proceedings of European Simulation Symposium., 9, 1994
  15. Luo ZY, Li XT, Wang QH, Chen LM, Ni MJ, Cen KF, Power Eng., 14, 19, 1994
  16. Wen CY, Chen LH, AIChE J., 28, 117, 1982
  17. Kunni D, Levenspiel O, Powder Technol., 61, 193, 1990
  18. Rhodes MJ, Geldart D, Powder Technol., 53, 155, 1987
  19. Johnsson F, Andersson S, Leckner B, Powder Technol., 68, 117, 1991
  20. Arena U, Amore MD, Massimilla L, AIChE J., 29, 40, 1983
  21. Merrick D, Cullinan J, AIChE Symp. Ser., 70, 366, 1974
  22. Vaux WG, Schruben JS, AIChE Symp. Ser., 79, 97, 1983
  23. Cook JL, Khang SJ, Lee SK, Keener TC, Powder Technol., 89(1), 1, 1996
  24. Li Y, Song CX, You CF, Energy Fuels., 24, 1682, 2010
  25. Hirschberg B, Werther J, AIChE J., 44(1), 25, 1998
  26. Van den Moortel T, Azario E, Santini R, Tadrist L, Chem. Eng. Sci., 53(10), 1883, 1998
  27. Shih SM, Ho CS, Song YS, Lin JP, Ind. Eng. Chem. Res., 38(4), 1316, 1999
  28. Liu CF, Shih SM, Ind. Eng. Chem. Res., 33, 407, 2002
  29. Irabien A, Cortabitarte F, Ortiz MI, Chem. Eng. Sci., 47, 1533, 2002
  30. Fernandez J, Garea A, Irabien A, Chem. Eng. Sci., 25, 1091, 1970
  31. Li Y, Yang L, You C, Qi H, Korean J. Chem. Eng., 26(4), 1155, 2009