Issue
Korean Journal of Chemical Engineering,
Vol.28, No.9, 1844-1850, 2011
Optimization of physical parameters of solid oxide fuel cell electrode using electrochemical model
To enhance the performance of anode-supported solid oxide fuel cell (SOFC), an electrochemical model has been developed in this study. The Butler-Volmer equation, Ohm’s law and dusty-gas model are incorporated to predict the activation, ohmic and concentration overpotentials, respectively. The optimal cell microstructure and operating parameters for the best current-voltage (J-V) characteristics have been sought from the information of the exchange current density and gas diffusion coefficients. As the cell temperature rises, the activation and ohmic overpotentials decrease, whereas the concentration overpotential increases due to the considerable reduction of gas density at the elevated temperature despite the increased diffusion coefficient. Also, increasing the hydrogen molar fraction and operating pressure can further augment the maximum cell output. Since there exists an optimum electrode pore size and porosity for maximum cell power density, the graded electrode has newly been designed to effectively reduce both the activation and concentration overpotentials. The results exhibit 70% improved cell performance than the case with a non-graded electrode. This electrochemical model will be useful to simply understand overpotential features and devise the strategy for optimal cell design in SOFC systems.
[References]
  1. Hamakawa S, Sato K, Hayakawa T, York AP, Tsunoda T, Suzuki K, Shimizu M, Takehira K, J. Electrochem. Soc., 144(1), 1, 1997
  2. Bejan A, Cambridge University Press, 2000
  3. Ordonez JC, Chen S, Vargas JVC, Dias FG, Gardolinski JEFC, Vlassov D, Int. J. Energy Res., 31(14), 1337, 2007
  4. Hernandez-Pacheco E, Singh D, Hutton PN, Patel N, Mann MD, J. Power Sources, 138(1-2), 174, 2004
  5. Kakac S, Pramuanjaroenkij A, Zhou XY, Int. J. Hydrog. Energy., 32, 761, 2007
  6. Costamagna P, Costa P, Antonucci V, Electrochim. Acta, 43(3-4), 375, 1998
  7. Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC, J. Electrochem. Soc., 146(1), 69, 1999
  8. Sunde S, J. Electroceram., 5(2), 153, 2000
  9. Divisek J, Jung R, Vinke IC, J. Appl. Electrochem., 29(2), 165, 1999
  10. Chan SH, Xia ZT, J. Electrochem. Soc., 148(4), A388, 2001
  11. Chan SH, Khor KA, Xia ZT, J. Power Sources, 93(1-2), 130, 2001
  12. Zhu HY, Kee RJ, J. Power Sources, 117(1-2), 61, 2003
  13. Lehnert W, Meusinger J, Thom F, J. Power Sources, 87(1-2), 57, 2000
  14. Yakabe H, Hishinuma M, Uratani M, Matsuzaki Y, Yasuda I, J. Power Sources, 86(1-2), 423, 2000
  15. Achenbach E, J. Power Sources., 49, 333, 1994
  16. Yakabe H, Ogiwara T, Hishinuma M, Yasuda I, J. Power Sources, 102(1-2), 144, 2001
  17. Iwata M, Hikosaka T, Morita M, Iwanari T, Ito K, Onda K, Esaki Y, Sakaki Y, Nagata S, Solid State Ion., 132(3-4), 297, 2000
  18. Deng XH, Petric A, J. Power Sources, 140(2), 297, 2005
  19. Suwanwarangkul R, Croiset E, Fowler MW, Douglas PL, Entchev E, Douglas MA, J. Power Sources, 122(1), 9, 2003
  20. Chan SH, Khor KA, Xia ZT, J. Power Sources, 93(1-2), 130, 2001
  21. Zhu HY, Kee RJ, J. Power Sources, 117(1-2), 61, 2003
  22. Ferguson JR, Fiard JM, Herbin R, J. Power Sources., 58, 109, 1996
  23. Ringuede A, Bronine D, Frade JR, Solid State Ion., 146(3-4), 219, 2002
  24. Chan SH, Xia ZT, J. Appl. Electrochem., 32(3), 339, 2002
  25. Ni M, Leung MKH, Leung DYC, J. Power Sources, 168(2), 369, 2007
  26. Kong JR, Sun KN, Zhou DR, Zhang NQ, Mu J, Qiao JS, J. Power Sources, 166(2), 337, 2007
  27. Ni M, Leung MKH, Leung DYC, Energy Conv. Manag., 48(5), 1525, 2007
  28. Song TW, Sohn JL, Kim JH, Kim TS, Ro ST, Suzuki K, J. Power Sources, 142(1-2), 30, 2005
  29. Costamagna P, Magistri L, Massardo AF, J. Power Sources, 96(2), 352, 2001
  30. Petruzzi L, Cocchi S, Fineschi F, J. Power Sources, 118(1-2), 96, 2003
  31. Pfafferodt M, Heidebrecht P, Stelter M, Sundmacher K, J. Power Sources, 149, 53, 2005
  32. Ringuede A, Bronine D, Frade JR, Solid State Ionics., 146, 219, 20