Issue
Korean Journal of Chemical Engineering,
Vol.28, No.9, 1824-1832, 2011
Free convective heat and mass transfer in a doubly stratified non-Darcy micropolar fluid
The flow, heat and mass transfer characteristics of the free convection on a vertical plate with uniform and constant heat and mass fluxes in a doubly stratified micropolar fluid saturated non-Darcy porous medium are studied. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms by pseudo-similarity variables. The resulting system of equations is then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The effects of the micropolar, Darcy, non-Darcy and stratification parameters on the dimensionless velocity, microrotation, wall temperature, wall concentration, local skin-friction coefficient and wall couple stress coefficient are presented graphically.
[References]
  1. Nield DA, Water Res., 4, 553, 1968
  2. Khan AA, Zebib A, J. Heat Transfer., 103, 179, 1981
  3. Soundalgekar VM, Proceedings of Indian Academy of Science., 84A, 194, 1976
  4. Nield DA, Bejan A, Convection in porous media, 3rd Ed., Springer-Verlag, New York, 2006
  5. Chung TJ, Kim MC, Choi CK, Korean J. Chem. Eng., 26(2), 332, 2009
  6. Gebhart B, Jaluria Y, Mahajan R, Sammakia B, Buoyancy lnduced flows and transport, Hemisphere Publishing Co., 1988
  7. Prandtl L, Essentials of fluid dynamics, Blackie, London, 1952
  8. Jaluria Y, Himasekhar K, Comput. Fluids., 11, 39, 1983
  9. Murthy PVSN, Srinivasacharya D, Krishna PVSN, Trans. ASME J.Heat Transfer., 126, 476, 2004
  10. Rathish Kumar BV, Shalini, Appl. Math. Comput., 171, 180, 2005
  11. Lakshmi Narayana PA, Murthy PVSN, Trans. ASME, J. Heat Transfer., 128, 1204, 2006
  12. Lakshmi Narayana PA, Murthy PVSN, J. Porous Media., 10, 613, 2007
  13. Jaluria Y, Gebhart B, J. Fluid Mech., 66, 593, 1974
  14. Anwar Beg O, Zueco J, Takhar HS, Int. Commun. Heat Mass Transfer., 35, 810, 2008
  15. Yoon DY, Kim MC, Choi CK, Korean J. Chem. Eng., 20(1), 27, 2003
  16. Cheng CY, Int. Commum. Heat Mass Transfer., 36, 351, 2009
  17. Eringen AC, J. Math. Mech., 16, 1, 1966
  18. Lukaszewicz G, Micropolar fluids - Theory and applications., Birkhauser, Basel, 1999
  19. Ahmadi G, Int. J. Eng. Sci., 14, 639, 1976
  20. Rees DAS, Pop I, IMA J. Appl. Math., 61, 179, 1998
  21. Hassanien IA, Essawy AH, Moursy NM, Appl. Math. Comput., 152, 323, 2004
  22. Abdulaziz O, Hashim I, Numerical Heat Transfer, Part A: Applications., 55, 270, 2009
  23. Zueco J, Anwar Beg O, Chang TB, Korean J. Chem. Eng., 26(5), 1226, 2009
  24. Awad F, Sibanda P, WSEAS Transactions on Heat and Mass Transfer., 5, 165, 2010
  25. Rahman MM, Aziz A, Al-Lawatia MA, Int. J. Therm. Sci., 49, 993, 2010
  26. Anuar I, Meccanica., 45, 367, 2010
  27. Bachok N, Ishak A, Nazar R, HEAPFL’10 Proceedings of the 2010 International Conference on Theoretical and Applied Mechanics, and 2010 International Conference on Fluid Mechanics and Heat and Mass Transfer., 26, 2010
  28. Srinivasacharya D, RamReddy C, Int. Review Chem. Eng., 3, 222, 2011
  29. Cebeci T, Bradshaw P, Physical and computational aspects of convective heat transfer., Springer-Verlag, New York, 1984
  30. Jena SK, Mathur MN, Int. J. Eng. Sci., 19, 1431, 1991
  31. Cowin SC, Phys. Fluids., 11, 1919, 1968
  32. Lee SL, Chen TS, Armaly BF, ASME J. Heat Transfer., 109, 711, 1987