Issue
Korean Journal of Chemical Engineering,
Vol.28, No.9, 1859-1866, 2011
Renewable hydrogen production by steam reforming of glycerol over Ni/CeO2 catalyst prepared by precipitation deposition method
Catalytic steam reforming of glycerol for renewable hydrogen generation has been investigated over Ni/CeO2 catalyst prepared by precipitation-deposition method. The fresh and used catalysts were characterized by surface area and pore size analysis, X-ray diffraction patterns and scanning electron micrographs. Reforming experiments were carried out in a fixed bed tubular reactor at different temperatures (400-700 ℃), glycerol concentrations (5-15 wt%) and contact times. (W/FAo=2-80 g-cat·h/mol of glycerol). The investigation revealed that the Ni/CeO2 catalyst prepared by the above method is effective to produce high yield of hydrogen up to 5.6 (moles of H2/moles of glycerol fed). The formation of methane and carbon monoxide was greatly reduced over this catalyst. Significantly low amount of coke deposition was observed on the CeO2 supported catalyst. From the kinetic analysis, the activation energy for the steam reforming of glycerol was found to be 36.5 kJ/mol.
[References]
  1. Patel S, Pant KK, J. Power Sources, 159(1), 139, 2006
  2. Patel S, Pant KK, ASME J. Fuel Cell Sci. Technol., 3, 369, 2006
  3. Cortright RD, Davda RR, Dumesic JA, Nature., 418, 964, 2002
  4. French R, Magrini-Bair K, Czernik S, Parent Y, Ritland M, Chornet E, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 47, 759, 2002
  5. Villegas L, Guilhaume N, Provendier H, Daniel C, Masset F, Mirodatos C, Appl. Catal. A: Gen., 281(1-2), 75, 2005
  6. Liu D, Kaun TD, Liao H, Ahmed S, Int. J. Hydrog. Energy., 29, 1035, 2004
  7. Zhu J, Zhang D, King KD, Fuel., 80, 899, 2001
  8. Zaldivar J, Nielsen J, Olsson L, Appl. Microbiol. Biotechnol., 56(1-2), 17, 2001
  9. Faungnawakij K, Kikuchi R, Eguchi K, J. Power Sources, 161(1), 87, 2006
  10. Faungnawakij K, Kikuchi R, Eguchi K, J. Power Sources, 164(1), 73, 2007
  11. Czernik R, French C, Feik C, Chornet E, In Gregoire Padro CE, Lau F, Ed., Advances in Hydrogen Energy, Kluwer Academic, New York, 87, 2000
  12. Czernik S, French R, Feik C, Chornet E, Ind. Eng. Chem. Res., 41(17), 4209, 2002
  13. Simonetti DA, Kunkes EL, Dumesic JA, J. Catal., 247(2), 298, 2007
  14. Dauenhauer PJ, Salge JR, Schmidt LD, J. Catal., 244, 298, 2006
  15. Garcia L, French R, Czernik S, Chornet E, Appl. Catal. A: Gen., 201(2), 225, 2000
  16. Byrd AJ, Pant KK, Gupta RB, Ind. Eng. Chem. Res., 46(11), 3574, 2007
  17. Zhang B, Tang X, Li Y, Xu Y, Shen W, Int. J. Hydrog. Energy., 32, 2367, 2007
  18. Iriondo A, Barrio VL, Cambra JF, Arias PL, Guemez MB, Sanchez-Sanchez MC, Navarro RM, Fierro JLG, Int. J. Hydrog. Energy., 35, 1162, 2010
  19. Adhikari S, Fernando S, Haryanto A, Adhikari, Renew. Energy., 33, 1097, 2008
  20. Zhang B, Tang X, Li Y, Cai W, Xu Y, Shen W, Catal. Commun., 6, 367, 2006
  21. Buffoni IN, Pompeo F, Santori GF, Nichio NN, Catal. Commun., 10, 1656, 2009
  22. Adhikari S, Fernando S, Haryanto A, Catal. Today, 129(3-4), 355, 2007
  23. Adhikari S, Fernando S, Haryanto A, Int. J. Hydrog. Energy., 32, 2875, 2007
  24. Guell BM, Babich I, Nichols KP, Gardeniers JGE, Lefferts L, Seshan K, Appl. Catal. B: Environ., 90(1-2), 38, 2009
  25. Slinn M, Kendall K, Mallon C, Andrews J, J. Bioresour. Technol., 99, 5851, 2008
  26. Byrd AJ, Pant KK, Gupta RB, Fuel., 87, 2956, 2008
  27. Semelsberger TA, Brown LF, Borup RL, Inbody MA, Int. J. Hydrog. Energy., 29, 1047, 2004
  28. Semelsberger TA, Borup RL, J. Power Sources., 155, 340, 2005
  29. Lutz AE, Bradshaw RW, Bromberg L, Rabinovich A, Int. J. Hydrog. Energy., 29, 809, 2004
  30. Kinoshita C, Turn S, Int. J. Hydrog. Energy., 28, 1065, 2003
  31. Kang I, Bae J, Bae G, J. Power Sources, 163(1), 538, 2006
  32. Hagh BF, Int. J. Hydrog. Energy., 28, 1369, 2003