Issue
Korean Journal of Chemical Engineering,
Vol.28, No.10, 2033-2040, 2011
Biosorption of copper(II) on prunus amygdalus shell: Characterization, biosorbent size analysis, kinetic, equilibrium and mechanistic studies
Deletion of Cu(II) from synthetic solution was investigated using ground Prunus Amygdalus shell (GPAS). FTIR revealed the probable functional groups for the binding of Cu(II). XRD revealed amorphous nature of the GPAS. SEM analysis furnished microscopic details of GPAS. GPAS size analysis was done using seven ASTM screens and three mean diameters, namely mass mean, volume mean and volume surface mean diameters. Kinetic study consisted of pseudo-first and pseudo-second order kinetics. Langmuir and Freundlich isotherms were used to elucidate the isotherm study of uptake of Cu(II) onto GPAS. Trend of Scatchard was used to verify the applicability of the Freundlich model, while D-R model helped to determine the nature of biosorption. A detailed analysis for rate controlling step was made. Various mean diameters were used to estimate the diffusion coefficient for the biosorption of Cu(II) onto GPAS.
[References]
  1. Volesky B, Holan ZR, Biotechnol. Prog., 11(3), 235, 1995
  2. Rao KS, Anand S, Venkateswarlu P, Korean J. Chem. Eng., 27(5), 1547, 2010
  3. Zhu CS, Wang LP, Chen WB, J. Hazard. Mater., 168(2-3), 739, 2009
  4. Volesky B, Hydron., 59, 203, 2001
  5. Jeon C, Park JY, Yoo YJ, Korean J. Chem. Eng., 18(6), 955, 2001
  6. Han R, Zhang L, Song C, Zhang M, Zhu H, Zhang L, Carbohyd. Polym., 79, 1140, 2010
  7. Pehlivan E, Altuna T, Cetin S, Bhanger MI, J. Hazard. Mater., 167(1-3), 1203, 2009
  8. Kumar YP, King P, Prasad VSRK, J. Hazard. Mater., 137(2), 1211, 2006
  9. Volesky B, Bv sorbex Inc., Montreal, 35, 2003
  10. Grimm A, Zanzi R, Bjornbom E, Cukierman AL, Bioresour. Technol., 99(7), 2559, 2008
  11. Pamukoglu MY, Kargi F, Process Biochem., 41, 1047, 2006
  12. Pehlivan E, Altun T, J. Hazard. Mater., 155(1-2), 378, 2008
  13. Kim TY, Park SK, Cho SY, Kim HB, Kang Y, Kim SD, Kim SJ, Korean J. Chem. Eng., 22(1), 91, 2005
  14. DengK L, Su Y, Su H, Wang X, Zhu X, Adsorption., 12, 267, 2006
  15. Mata YN, Blazquez ML, Ballester A, Gonzalez F, Munoz JA, J. Hazard. Mater., 158(2-3), 316, 2008
  16. Gupta S, Babu BV, Chem. Eng. J., 150(2-3), 352, 2009
  17. Krishnani KK, Meng XG, Christodoulatos C, Boddu VM, J. Hazard. Mater., 153(3), 1222, 2008
  18. Li K, Wang X, Bioresour. Technol., 100, 2810, 2009
  19. Estevinho BN, Ratola N, Alves A, Santos L, J. Hazard. Mater., 137(2), 1175, 2006
  20. Acma HH, Yaman S, Fuel., 86, 373, 2007
  21. Kumar KV, Porkodi K, J. Hazard. Mater., 146(1-2), 214, 2007
  22. Mcabe WL, Smith JC, Harriot P, Unit operations of chemical engineering, 7th Ed., McGraw Hill Inc., 2005
  23. Dalmini NP, Mamba BB, Bafubiandi AFM, Water S.A., 36(4), 445, 2010
  24. Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2, 2010
  25. Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S, J. Hazard. Mater., 162(2-3), 616, 2009
  26. Yu Q, Kaewsarn P, Korean J. Chem. Eng., 16(6), 753, 1999
  27. Li G, Xue P, Yan C, Li Q, Korean J. Chem. Eng., 27(4), 1239, 2010
  28. Dahlquist FW, Methods of Enzymology, Academic Press, New York, 270, 1978
  29. Weber WJ, Morris JC, J. Sanit. Eng. Div. A.S.C.E., 89, 31, 1963